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Characterizing elastic turbulence in channel flows at low Reynolds number
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We experimentally investigate the flow of a viscoelastic fluid in a parallel shear geometry
at low Reynolds number. As the flow becomes unstable via a nonlinear subcritical instability,
velocimetry measurements show nonperiodic fluctuations over a broad range of frequencies
and wavelengths, consistent with the main features of elastic turbulence. Using the same
experimental setup, we compare these features to those in the flow around cylinders, which
is upstream of the parallel shear region; we find significant differences in power spectrum
scaling, intermittency statistics, and flow structures. We propose a simple mechanism
to explain the growth of velocity fluctuations in parallel shear flows based on polymer
stretching due to fluctuations in streamwise velocity gradients.
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I. INTRODUCTION

Unlike water, the flow of viscoelastic fluids such as polymeric and surfactant solutions can exhibit
flow instabilities even in the absence of inertia, i.e., low Reynolds number (Re) [1–8]. At high flow
rates, flows of viscoelastic fluids exhibit a completely different type of chaotic behavior, elastic
turbulence, that has no analogs in Newtonian liquids [9–12]. Purely elastic instabilities are found in
many practical flows and understanding these instabilities is fundamental to our knowledge of how
biological fluids (e.g. blood, vesicles, and mucus) flow [13–16], chemical and polymer industries
where flow instabilities have been plaguing processing for years [17,18], and micro- and nanofluidics
where purely elastic instabilities were proposed as a way of effective mixing at small length scales
[11,19–21].

These flow instabilities result from the development of polymeric elastic stresses in the fluid due
to flow-induced changes in polymer conformation in solution. These stresses are strain dependent,
anisotropic, and depend on the nature of the flow [22]. Elastic stresses are often observed in systems
where the mean flow has sufficient curvature, such as the flow between rotating disks [10,23,24],
between concentric cylinders [1,2,4,12], through curved channels [11], and around obstacles [5,25].
In these systems, high-velocity gradients and curved streamlines can stretch the polymer molecules,
inducing elastic stress and flow instabilities [22]. In fact, it has been argued that curvature is a
necessary condition for infinitesimal perturbations to be amplified by the normal stress imbalances
in viscoelastic flows [26–28] and much of recent work on elastic turbulence has been devoted to
geometries with curvature [9,25].

Recent theoretical investigations, however, have shown that viscoelastic flows can be nonlinearly
unstable even in parallel shear flows such as in straight pipes and channels at low Re [29–33].
For example, nonlinear perturbation analysis [29–31] predicts a subcritical bifurcation from stable
base states, while nonmodal stability analysis predicts transient growth of perturbation [32,33].
Subsequent experiments in small pipes [34] found unusually large velocity fluctuations that are
activated at many time scales, but the subcritical nature of the instability was not established and
no hysteretic behavior (a characteristic of subcritical instabilities) was reported. More recently, the
existence of a nonlinear subcritical instability of viscoelastic fluid in a (micro)channel flow was
reported in experiments [8]. It was shown that, in the absence of inertia (i.e., low Reynolds number),
a finite level of perturbation is required to destabilize the flow and the resultant flow fluctuation is
hysteretic [8]. This subcritical transition in viscoelastic channel flows is hence akin to the transition
from laminar to turbulent flows of simple Newtonian fluids (e.g., water) in pipes, except that the
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FIG. 1. (a) Schematic of the experimental channel geometry. (b) Space-time plot of the streamwise velocity
fluctuation u′, immediately after the last cylinder, for x = 2W and Wi = 10. (c) The fluctuation landscape far
downstream at 200W .

governing parameter is the Weissenberg number (Wi), defined as the product of the fluid relaxation
time λ and the flow shear rate γ̇ . However, the main features of the resulting unstable flow have yet
to be well characterized and as a result, the flow of viscoelastic fluids in straight channels remains
poorly understood.

In this paper we investigate the flow of a polymeric fluid in a straight microchannel at low Re using
particle tracking methods. The flow is excited using a linear array of cylinders and is monitored
(i) immediately after the array of cylinders and (ii) far downstream. We find that both the flow
next to the cylinder and that far downstream show features of elastic turbulence including velocity
fluctuations excited over a broad range temporal frequencies and spatial length scales. There are,
however, significant differences between those flows including the flow structure [cf. Figs. 1(b) and
1(c)], velocity time series statistics, and temporal and spatial spectra decay. A simple mechanism
is proposed for the sustained fluctuations observed in the parallel shear flow region based on a
self-sustaining mechanism of energy feedback between the flow fluctuation and polymer elastic
energy.

II. METHODS

The flow of a dilute polymeric solution is investigated using a straight microchannel with a
square cross section (W = D = 100 μm). The microchannel is made of polydimethylsiloxane using
standard soft-lithography methods. The length of the microchannel is much larger than its width
L/W = 330 and it is partitioned into two regions. The first region is comprised of a linear array
of cylinders that extends for 30W . A total of 15 cylinders (n = 15) is used in the linear array; a
schematic is shown in Fig. 1(a). Each cylinder has a diameter d of 0.5W and is evenly spaced with
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a separation of � = 2W ; the last cylinder is at position x = 0. The second region is a long parallel
shear flow, which follows the initial linear array of cylinders and is 300W in length. More details on
the channel design can be found elsewhere [8].

The polymeric solution is prepared by adding 300 ppm of polyacrylamide (PAA) (18×106 MW)
in a viscous Newtonian solvent (90% by weight glycerol aqueous solution); the PAA polymer
overlap concentration (c∗) is approximately 350 ppm [35] and c/c∗ = 0.86. This polymeric solution
possesses a nearly constant viscosity of approximately η = 200 mPa s; for more information on the
rheological properties of the fluid, see the Supplemental Material [36] and [8]. A Newtonian solution,
90% by weight glycerol in water, is also used for comparison. The Reynolds number is kept below
0.01, where Re = ρUH/η, U is the mean centerline velocity, H is the channel half-width, and ρ is
the fluid density. The strength of the elastic stresses compared to viscous stresses is characterized
by the Weissenberg number [3,37], here defined as Wi(γ̇ ) = N1(γ̇ )/2γ̇ η(γ̇ ), where γ̇ = U/H is
the shear rate and N1 is the first normal stress difference. The fluid relaxation time is obtained from
shear rheology data (see [36]) and is defined as λ(γ̇ ) = N1(γ̇ )/2γ̇ 2η; values of λ range from 0.1 to
1.0 s for the typical shear rates in the channel experiment. For the experiments presented here, the
Weissenberg number is kept constant at approximately 10 and the number of cylinders at 15. We
note that the critical value of Wi for the onset of the subcritical instability in the parallel flow region
is Wic = 5.2 for the type of disturbances (15 cylinders) introduced here [8].

The flow is characterized using particle tracking velocimetry. Fluorescent particles (0.6 μm in
diameter) are dispersed in the fluids and imaged using an epifluorescent microscope and a high-speed
camera (up to 104 frames/s). Spatially resolved velocity fields are obtained by tracking particles in
a rectangular window (width equal to 0.9W , length equal to 1.2W , and centered at y = 0) with a
grid resolution of ∼1 μm. The resultant time resolution is �t = 25 ms. However, we can increase
the time resolution and duration of the velocimetry measurements by decreasing the window size
(width equal to 0.1W and length to 0.7W ). This time-resolved measurement produces velocity time
series with high resolution (�t = 1 ms) and relatively long sampling duration (up to 300 s).

III. RESULTS AND DISCUSSION

We begin our flow analysis by measuring the flow streamwise velocity u(x,y,t) in the wake of
the last cylinder (x = 2W ) as well as in the parallel shear region (x = 200W ) using the spatially
resolved measurement (i.e., large window size). The streamwise velocity fluctuation u′ is obtained by
subtracting the ensemble average 〈u〉 from the measured signal u′ = u − 〈u〉. Figure 1(b) shows the
space time plot of u′(y,t) along a cut line in the wall-normal direction (y axis) at the cylinder wake
region [x = 2W in Fig. 1(a)] of the channel. Here the spatial coordinate used is the wall-normal y

coordinate and the channel centerline is at y = 0. The data show relatively large velocity fluctuation in
the cylinder wake, with the amplitude reaching approximately 2 mm/s or 28% of the overall channel
centerline mean speed (∼7 mm/s). Along the y direction, we find that high-intensity fluctuations
are concentrated in the form of “spots,” which are manifestations of streamwise streaks of high- and
low-local-velocity fluctuations. These streaks have a wide range of temporal durations and spatial
sizes, as large as the cylinder diameter (∼50 μm) and as small as the velocity grid spacing (∼1 μm).
Far downstream [200W ; see Fig. 1(c)], however, the flow is significantly different from that in the
cylinder wake. We find that velocity fluctuations at 200W exist in the form of aperiodic bursts of
various durations and appear to be spatially smoother in the wall-normal direction. We note that no
appreciable fluctuations are found in the Newtonian case under similar conditions. Overall, we find
markedly different flow structures as the fluid moves from regions near the cylinder (curved flows)
to the parallel shear region.

To quantify the temporal dynamics of the (unstable) flow, we measure the centerline velocity
fluctuations u′

c(t) for both Newtonian and polymeric solutions in the wake of the cylinder [Fig. 2(a)]
and in the parallel shear region [Fig. 2(b)] using the small interrogation window. The data show
significant velocity fluctuations for the viscoelastic fluid; the standard deviation (i.e., fluctuations)
reaches approximately 10% of the centerline mean, in both regions of the flow. No significant
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FIG. 2. Time series and the associated probability distribution of centerline velocity fluctuations u′
c for

n = 15 and Wi = 10. (a) Velocity records measured in the cylinder wake (x = 2W ). An interval of 60 s is
shown out of the total duration of 300 s. (b) Velocity records measured far downstream in the parallel shear
flow region (200W ). (c) Probability distribution of the associated time series, normalized by the maximum of
the probability density. Each curve includes 1.3 × 106 samples.

fluctuations are found in the Newtonian fluid case, shown in gray, under the same conditions (i.e.,
flow rates). At both locations, the velocity fluctuations of the polymeric solution show an irregular
pattern without an apparent periodicity and the amplitudes of the centerline velocity variations are
quite similar. There are, however, differences between the flow in the wake of the cylinder (2W ) and
in the parallel shear region (200W ). Specifically, the data show that far downstream [Fig. 2(b)], the
velocity fluctuations in the high-frequency range are weaker compared to those in the cylinder wake
[Fig. 2(a)], as will be discussed below. In addition, the mean of u′

c(t) at the cylinder wake is negatively
biased towards the low-velocity values. Physically, this means the flow at 2W is characterized by
intermittent jumps to high velocities amidst dwelling at lower velocities, while far downstream
(200W ) the flow seems to fluctuate around the mean evenly.

The contrast between the flow in these two locations can be further quantified by computing the
normalized probability distribution of u′

c(t) [Fig. 2(c)]. In the cylinder wake, we find that the mode
of the distribution has a negative bias towards lower velocity, consistent with the data in Fig. 2(a). We
also find a pronounced tail towards high velocities, which indicates that the distribution is positively
skewed. In the parallel shear region [Fig. 2(c)], by contrast, we find a symmetric distribution that
is well represented by a Gaussian fit (solid line). Consequently, the skewness of the distribution is
0.41 at 2W , compared to the much lower 0.06 at 200W . We believe that near the cylinder (2W ), the
observed aperiodic jumps in u′

c(t) are associated with the sudden release of elastic energy by polymer
molecules into the flow (analogous to the intermittently injection of elastic energy in Refs. [24,38]).
Far downstream (200W ), on the other hand, the even likelihood of velocity above and below the
mean value indicates an unbiased energy transfer back and forth between the polymer and the flow.
This idea is further developed below by monitoring the fluctuations of the spatial velocity gradients,
the random components of the flow that drive the stretching of polymers [39].

Next we analyze the velocity fluctuations by computing the frequency power spectra. Figure 3(a)
shows the power spectra of the centerline velocity for n = 15 and Wi = 10, both polymeric and
Newtonian solutions. The data show that the viscoelastic fluid flow is excited at a broad range of
frequencies f at all measured channel locations (from 2W to 200W ). This feature is one of the main
hallmarks of elastic turbulence, which is most often observed in curved geometries [10].

Figure 3(a) also shows a gradual decay of the frequency power spectrum, following f −1.7 in the
wake of the cylinder (2W ). We note that this value (−1.7) is significantly higher than the value of
−3.4 reported in a recent two-dimensional simulation of an Oldroyd-B fluid flowing in a channel with
periodic array of cylinders [25]. Moreover, the power-law exponent −1.7 is relatively high compared
to experiments of viscoelastic flows in closed systems with curved streamlines; for example, a −3.3
exponent was reported in a serpentine flow [11]. However, Groisman and Steinberg [9] reported a
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FIG. 3. Frequency power spectra and total power of the centerline velocity along the channel. (a) Frequency
spectra, at positions immediately around the curved cylinder to far down the parallel shear region, for Wi = 10
and n = 15. (b) Total spectral power contained in the velocity fluctuation, summed from the dominant range
0.01–100 Hz. The inset is a zoom in of the Wi = 10 case.

high-power decay exponent, between −1.1 and −2.2, in experiments in a Taylor-Couette geometry,
where the rotation period is close to the polymer relaxation time. We note that in our flow geometry,
the time scale associated with the flow round the linear array of cylinders ranges from U/n� ∼ 1 Hz
to U/d ∼ 100 Hz and represents the frequency by which the mean flow is perturbed by the
periodic cylinder array. This range overlaps with the polymer relaxation time scales (1–10 Hz)
over a frequency decade. We believe that the abnormally gradual decay of the power spectra in the
immediate wake of the cylinders is likely the result of the overlap of these two time scales.

As the flow moves downstream from the array of cylinders into the parallel shear flow region,
however, we observe clear developments in the frequency spectra. We find that, in a few channel
widths after the last cylinder, the energy decreases in the high-frequency range (10–100 Hz), which
corresponds to the periodic perturbation introduced by the cylinders. At x = 20W , the decrease in
high-frequency fluctuations intensifies across two frequency decades. On the other hand, the power
in the low-frequency range (0.01–0.1 Hz) of the spectrum increases. The combined result is that,
after 20W , velocity fluctuations are increasingly dominated by low-frequency variations and the
power-law decay becomes steeper, following f −2.7. This behavior is different from that reported
by [34], where spectral power is reduced across all frequencies as a function of distance from the
entrance and the decay law (−1.5) is nearly the same as the flow moves downstream. By contrast,
we find that the decay exponent changes from −1.7 near the cylinders to −2.7 far downstream and
that the energy contained in the high-frequency range near the cylinders seems to shift toward the
low-frequency range in the parallel shear region.

Next we compute the total spectral power by summing over the dominant frequency range
(0.01–100 Hz). This is equivalent to the standard deviation of the time series if all valid frequencies
are used. We perform this analysis for flows above and below the onset of the subcritical instability
in the parallel shear region (Wic = 5 for n = 15). Figure 3(b) shows the evolution of the total
energy down the channel for Wi = 4 (<Wic) and Wi = 10 (>Wic); n = 15 for all flows investigated
here. For the Wi = 4 case, where the flow is not energetic enough to trigger velocity fluctuations
downstream in the parallel shear flow, we find a sharp decay of total power by two orders of
magnitude. The Wi = 10 case sees an initial decay in total power within the first 20W . However,
after x = 20W , the trend reverses and follows a steady increase downstream into the parallel shear
flow region [Fig. 3(b), inset], despite the dissipative environment (Re ∼ 0.01). Such persistence of
fluctuation energy suggests a self-sustaining mechanism that we try to elucidate below. We note that
20W corresponds roughly to ∼4λU for the Wi = 10 flow, where U is the centerline mean velocity.

We now turn our attention to the spatial features of the viscoelastic flow. Figure 4(a) shows
the spatial spectra of the velocity fluctuations u′(x,y,t) in the wall-normal (y-axis) direction. This
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FIG. 4. Spatial characteristics of the (unstable) flow evolution along the channel for Wi = 10 and n = 15.
(a) Spatial power spectra as a function of wall-normal [y-axis; see Figs. 1(b) and 1(c)] wave number k (spatial
frequency) of the velocity fluctuation fields at various channel positions. (b) The rms variation σ of shear ∂u/∂y

and elongational ∂u/∂x components of the velocity gradient, normalized by the spatial mean shear rate 〈γ̇ 〉 in
the parallel shear flow. (c) Elongation component of the rms profile across channel width y immediately in the
cylinder wake (2W ), at the end of the cylinder flow decay (20W ), and far downstream in the parallel shear flow
region (150W ).

direction is orthogonal to the streamwise flow and provides insights into the flow structures in the
direction of gradients in shear. We find that the flow is activated at a wide range of spatial length
scales l (from 100 μm down to approximately 5 μm) in the wall-normal direction and that spatial
variations in u′ are much stronger near the array of cylinders than in the parallel shear region [see
also Figs. 1(b) and 1(c)]. The spatial spectrum of the viscoelastic flow near the cylinder follows a k−3

decay. Note that the wave number k is here defined as 1/l, which is the spatial frequency. As the fluid
travels downstream into the parallel shear flow, the spatial fluctuations weaken, and the spectrum
follows k−2; the data also show that these spatial fluctuations are almost uniform across the channel
[see Fig. 1(c)]. These results, along with the data shown in Fig. 3(a), indicate that even though the
flow near the cylinders and in the parallel shear region possess features of elastic turbulence, they
are quite different in their structure. This shows the difference between elastic turbulence in flows
in curved geometries and in straight channels in a single system.

So far we have shown that the flow of a polymeric fluid in a parallel shear geometry can
sustain relatively large velocity fluctuations in both space and time even at low Re. These velocity
fluctuations, far downstream from the initial perturbation, are most likely driven by the stretching
of polymer molecules in the flow. To test this hypothesis, we measure the root mean square (rms)
variation of the shearing (∂u/∂y) and elongational (∂u/∂x) components of the velocity gradient;
here the rms of quantity A is defined as σ = 〈(A − 〈A〉)2〉1/2, similar to [39]. These components
(quantities) are known to mediate polymer stretching in random flows [39–42].

Figure 4(b) shows the rms variation σ of ∂u/∂y and ∂u/∂x at various positions along the channel
normalized by the spatial average shear rate 〈γ̇ 〉 downstream in the parallel shear flow. Near the
linear array of cylinders, we find significant fluctuations of the velocity gradients relative to the
mean shear rate in the parallel shear flow. Moreover, the ∂u/∂y component dominates ∂u/∂x and
both components decay as the polymeric solution flows downstream. These trends persist down
to approximately 20W in the channel. However, at x � 20W , we find that both components of
σ/〈γ̇ 〉 reverse trend and begin to increase as the fluid flows downstream. Concurrently, we observe
that the fluctuation in the elongation component becomes increasingly comparable to that of the
shear component. These trends clearly show a change in flow at or around 20W accompanied by an
increase in velocity fluctuations and polymer stretching. This nonmonotonic trend is also captured by
plotting the spatial profile of σ/〈γ̇ 〉 for ∂u/∂x across the channel width (y axis) for three different
channel locations, shown in Fig. 4(c). The data suggest that polymer molecules are increasingly
stretched by flow gradient in the streamwise direction beyond 20W .
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To further demonstrate that the magnitude of the fluctuation in velocity gradients is large enough
to generate polymer stretching, we compute a Weissenberg number based on fluctuations in the
velocity gradients. Here Wisrms = λ(γ̇ )σ (∂u/∂y), where the rms fluctuation of the shear gradient
is nondimensionalized by the polymer relaxation time. Using the relaxation time corresponding
to Wi = 10.2, we find that Wisrms ∼ 5.2 in the cylinder wake (x = 2W ), while far downstream,
it is approximately 2. Moreover, far downstream, the Weissenberg number based on the rms of
elongational Wierms ∼ 1. We note that the values of both Wisrms and Wierms are near or larger than 1,
which suggests that the flow is able to generate sufficient polymer stretching [43,44].

IV. CONCLUSION

In summary, we investigated the flow of a viscoelastic fluid in a parallel shear geometry at low
Re. This flow becomes unstable via a nonlinear subcritical instability above a critical Weissenberg
number (Wic = 5.2) if perturbations are strong enough [8]. Using spatially and temporally resolved
velocimetry, we identified signatures of elastic turbulence in the parallel shear region. This flow
contrasts in many ways with elastic turbulence near the array of cylinders, which we had found
in our previous experiments (same experimental setup) to be linearly unstable [8]. Specifically,
we found that the flow near cylinders is organized by streamwise streaks that manifest as spots in
Fig. 1(b), while temporal bursts that manifest as spanwise bands are found in the parallel shear region
[Fig. 1(c)]. Moreover, the energy contained in the high-frequency range near the cylinders seems to
shift toward the low-frequency range in the parallel shear region [Fig. 3(a)]. We provided a simple
mechanism for the sustained (and even growth) of velocity fluctuations in the parallel shear region
based on polymer stretching due to rms fluctuations of the velocity gradients in the streamwise
(x-axis) direction. These results suggest the emergence of a different type of elastic turbulent state
in parallel shear flows.
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