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a b s t r a c t

Multi-drug resistance of pathogenic microorganisms is becoming a serious threat, particularly to
immunocompromised populations. The high mortality of systematic fungal infections necessitates novel
antifungal drugs and therapies. Unfortunately, with traditional drug discovery approaches, only echi-
nocandins was approved by FDA as a new class of antifungals in the past two decades. Drug efflux is one
of the major contributors to multi-drug resistance, the modulator of drug efflux pumps is considered as
one of the keys to conquer multi-drug resistance. In this study, we combined structure-based virtual
screening and whole-cell based mechanism study, identified a natural product, beauvericin (BEA) as a
drug efflux pump modulator, which can reverse the multi-drug resistant phenotype of Candida albicans
by specifically blocking the ATP-binding cassette (ABC) transporters; meantime, BEA alone has fungicidal
activity in vitro by elevating intracellular calcium and reactive oxygen species (ROS). It was further
demonstrated by histopathological study that BEA synergizes with a sub-therapeutic dose of ketoco-
nazole (KTC) and could cure the murine model of disseminated candidiasis. Toxicity evaluation of BEA,
including acute toxicity test, Ames test, and hERG (human ether-�a-go-go-related gene) test promised that
BEA can be harnessed for treatment of candidiasis, especially the candidiasis caused by ABC overex-
pressed multi-drug resistant C. albicans.
© 2016 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The opportunistic fungal pathogen Candida albicans is one of the
major causes of systemic severe infections with a high mortality. It
represents an emerging global health threat, especially among the
immunocompromised populations.1,2 Unfortunately, only a limited
number of effective classes of antifungals are available in the
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clinic:3 (i) azoles, such as fluconazole, which inhibit Erg11 and
blockergosterol biosynthesis; (ii) polyenes, such as amphotericin B,
which bind to ergosterol, forming pores in the cell membrane; (iii)
echinocandins, such as caspofungin, which inhibit b-(1,3)-d-
glucan synthase and disrupt cell-wall integrity; (iv) pyrimidine
analogs, such as flucytosine, which inhibit DNA and RNA synthesis,
and (v) griseofulvin, which deteriorate spindle and cytoplasmic
microtubules, to influence bud formation. Unwanted side-effects
remain a major problem in clinical use of these antifungal drugs.
With increased prophylactic use of antifungal drugs in the
expanding susceptible populations, including those immunocom-
promised patients, multi-drug resistance among fungal pathogens
has significantly increased.3 There are various mechanisms that
contribute to the multi-drug resistance of C. albicans.4e6 Among
them, two are particularly predominant: (i) reducing intracellular
drug accumulation by overexpression of drug efflux pumps: Cdr1
and Cdr2 belong to ABC transporters; and Mdr1 belongs to the
major facilitator super family (MFS);7 (ii) use of alternative path-
ways or altered target enzymes when the primary one is blocked,
e.g. acquiring mutations in ERG11, which encodes the azole target
enzyme 14a-demethylase.8 Multi-drug resistant pathogens have
significantly increased the frequency of treatment failures. Tradi-
tional strategy to deal with multi-drug resistance is increasing the
drug dosage or finding another alternative drug. Unfortunately, the
speed of resistance generation is much faster than that of new drug
discovery, thus generating a vicious circle for more severe drug
resistance. Some new antifungal agents were discovered during the
past few decades, however, after consideration of toxicity and other
side-effects, only one new class of antifungal drugs, echinocandins,
is approved by FDA.9 We so urgently need new antifungals and
antifungal therapies, as well as the means to find them. It is
believed that modulating the activity of drug efflux pumps,
together with synergistic drug combination can be one of the keys
to control multi-drug resistant fungal pathogens. Inhibiting drug
efflux pumps can sensitize multi-drug resistance; while aiming
more than one target can slow down or even prevent the emer-
gence of drug-resistance. Co-crystallization study showed that P-
glycoprotein (P-gp), one kind of ABC transporters, the main
contributor to cancer multi-drug resistance, can be inhibited by
some chemicals.10 Traditional drug discovery demands massive
screening, which is extremely time, labor, and cost consuming.
Structure-based drug discovery is emerging, because it can deliver
handleable candidates for experimental evaluation in a faster, low
cost and highly efficient manner.11 As the structures of Cdr1 and
Cdr2 are not elucidated yet, we established homology models of
Cdr1 and Cdr2 for structure-based virtual screening of the
customized sub-library of ZINC15.12 Interestingly, one of the high
score ABC inhibitor candidates is BEA, which was reported previ-
ously to have strong synergy with some azole compounds, like
miconazole against both drug susceptible and resistant C. albicans
in vitro,13 and KTC against diverse fungal pathogens both in vitro
and in vivo,14 the synergistic antifungal effect was not caused by
their pharmacokinetic interactions.15 However, its synergism and
the underlying mechanism of killing were unknown. In this study,
combining virtual screening, docking and experimental evaluation,
we revealed the synergistic mechanism of BEA, additionally, we
also found that BEA alone has fungicidal activity. Together with
in vivo testing and toxicity evaluation, BEA showed promising fea-
tures as a new antifungal agent.

2. Materials and methods

2.1. Experimental subjects, chemicals, primers, and culture media

Cancer cell lines (A549, H1299, H157, H460, H358, H522, H1650,
H1792, H226, Calu-1), C. parapsilosis (ATCC22019), and C. albicans
SC5314 were maintained in our laboratory. Clinical isolates of
C. albicans, C. krusei, and C. tropicalis were provided by a local hos-
pital. All strains were maintained in 25% (v/v) glycerol at �80 �C.
Specific pathogen-free ICRmice (white,18e22 g, half females), were
obtained from B & K Universal Group Limited, Shanghai, China.

RPMI 1640 (Invitrogen) was used according to the manufac-
turer’s protocol. YEPD liquid medium consisted of: yeast extract 1%
(w/v), peptone 2% (w/v), dextrose 2% (w/v), 2% (w/v) agar will be
added for plates.

The complete list of microbes used in this study is provided in
Table S1. All primers used in this study are listed in Table S2. All
chemicals were used in this study according to the manufacturer’s
directions.

2.2. Virtual screening

The input files of receptor were prepared by AutoDock/Vina
plugin of PyMOL,16 the sdf formatted ligands were downloaded
from ZINC15 3D Tranches,12 under the parameters of “React. :
Standard”, “Purch. : Wait OK”, “pH: Ref Mid”, and “Charge: �2 �1
0 þ1 þ2”. All tranches were imported into PyRx17 by Open Babel,
then the molecules were processed by energy minimization and
then all of them were converted to AutoDock Ligands. The virtual
screening was carried out by Vina Wizard, the grid boxes were
manually adjusted to center_x¼21.55, center_y¼65.64, center_-
z¼13.71, size_x¼62.13, size_y¼50.11, size_z¼52.25 for Cdr1;
while center_x¼21.06, center_y¼65.66, center_z¼14.23,
size_x¼62.51, size_y¼50.60, size_z¼52.23 for Cdr2. The exhaus-
tiveness for both Cdr1 and Cdr2 is 8 (up to 9 poses).

2.3. Antifungal susceptibility and synergistic antifungal testing

Antifungal and synergistic antifungal tests were carried out as
described previously,14,18 using a broth microdilution protocol
modified from the Clinical and Laboratory Standards Institute M-
27A319 methods. All minimal inhibitory concentration (MIC) tests
were undertaken in triplicate. MICs were determined as the con-
centration of drugs that inhibited microbial growth by 90% relative
to the corresponding drug-free growth control.

2.4. Rhodamine 6G efflux assay

Fungal strains were cultivated in YEPD liquid medium at
200 rpm (30 �C) for 16 hours. The harvested cells were washed
twice with ice-cold glucose-free PBS. Cells were suspended in ice-
cold glucose-free phosphate buffered saline (PBS) and incubated
at 200 rpm (30 �C) for 4 hours under starvation conditions to
reduce ABC pump activity. Cells were then washed twice and
diluted to 108 cells/ml in ice-cold glucose-free PBS, as determined
with a hemocytometer. BEA at a concentration of 16mg/ml (about
2�MIC) was added when necessary, while PBS was added as the
negative control. All samples were incubated for another 2 hours at
200 rpm (30 �C). Then, 10mM (final concentration) rhodamine 6G
was added, and cells were incubated for further 1.5 hours at
200 rpm (30 �C). The external rhodamine 6G was then removed by
washing with glucose-free PBS and glucose was added to the
samples (to a final concentration of 3mM) to reactivate the ABC
efflux pumps, with PBS as the negative control. Cell samples (1ml)
were taken at designated time points, centrifuged and 100ml of
each supernatant was transferred into black 96-well microtiter
plate with clear bottoms (Greiner, Germany). Rhodamine 6G fluo-
rescence was measured with a Multilabel Plate Reader (Perkin
Elmer, USA) at 510nm excitation/535nm emission wavelengths.
Experiments were carried out at least in triplicate.
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2.5. Intracellular calcium and ROS measurement

C. albicans SC5314 cells were cultivated in YEPD liquid medium
at 200 rpm (30 �C) for about 16 hours. The harvested cells were
washed twice with ice-cold PBS and diluted to 5�107 cells/ml
with ice-cold PBS, as determined with a hemocytometer and
confirmed by cfu counting. For calcium measurement, designated
concentrations of each drug were added to 1ml samples, and co-
incubated at 200 rpm (30 �C) for 4 hours to get dose-dependent
data. For the time-dependent assay, 64 mg/ml of each drug was
added to 1ml samples, and incubation was stopped at specific
time points. For ROS detection, after co-incubationwith each drug
at 200 rpm (30 �C) for 4 hours, DCFH-DA (20,70-dichlorofluorescein
diacetate) was added to a final concentration of 10 mM and cells
were incubated for another 30min at 200 rpm (30 �C). The cells
were then washed to remove external drugs, resuspended in Ca
NW working solution (according to DiscoverX HitHunter™ Cal-
cium No WashPLUS Assay Kit protocol) and incubated at 37 �C,
200 rpm for 2 hours. Then 100 ml of each sample was transferred
into black 96-well microtiter plate with clear bottoms (Greiner,
Germany). The plate was equilibrated at room temperature for 6
hours, but this step was not necessary for ROS detection. The
fluorescence was measured with a Multilabel Plate Reader (Perkin
Elmer, USA) at 485nm excitation/510 nm emission wavelengths
for calcium measurement, and 485nm excitation/525nm emis-
sionwavelengths for ROS detection. Experiments were carried out
at least in triplicate.

2.6. Mouse model and ethics statement

Animal related experiments were carried out in Guangdong
Laboratory Animal Monitoring Institute, which has earned AAALAC
accreditation (001469).

Specific-pathogen-free female ICR [Crl: CD-1] mice (female,
white, 20e22 g) were used in this study. Experiments were carried
out as described previously.14,20 Animal use protocols were
reviewed and approved by IACUC of Guangdong Laboratory Animal
Monitoring Institute in accordance with the Guide for the Care and
Use of Laboratory Animals. Animals were bred in negative pressure
isolation cages in an animal negative pressure facility with an
approval of and oversight by the Local Provincial Institutional
Environmental Health and Safety Office,20 the whole project was
carried out under the license IACUC2012006.

The animals, housed in cages of five mice per group and fed
with standard rodent chow ad libitum, were allowed to acclimate
for 1 week before active experimentation carried out. Before
infection, mice were rendered neutropenic by i.p. injection of
cyclophosphamide daily for 3 consecutive days at a dosage of
100mg/kg body weight. Mice were then infected with 0.1ml of
5�105 cfu/ml of C. albicans or C. parapsilosis in warmed saline
(35 �C) by the lateral tail vein. Test compound(s) either alone or in
combination (0.5mg/kg BEAþKTC, and 50mg/kg KTC) were
administered orally by gavage 6 hours post infection and once
daily thereafter for 5 days. A control group received 0.1ml of sa-
line by the same route as the placebo regimens. Animals were
observed thrice daily for signs of drug-related morbidity or mo-
rality. Mice that became immobile or otherwise showed signs of
severe illness were terminated and recorded as dying on the
following day.

2.7. Necropsy and histopathology

Necropsy and histopathological analysis were carried out as
described previously,20 briefly speaking, immediately after eutha-
nasia in the 19th day of infection, the brain, heart, lungs, liver,
spleen, and right kidney were immersed in buffered 10% formalin.
After paraffin embedding and sectioning, standard 5mm sections
were cut and stained with hematoxylin and eosin (H&E) and pe-
riodic acid-Schiff (PAS).

2.8. Quantification of differentially expressed genes by quantitative
real time PCR

The primers used are listed in Table S2. RNA isolation, cDNA
synthesis, and PCR amplification were carried out as manufac-
turer’s directions. Independent quantitative real time PCRs were
performed in triplicate using the ABIPrism7300 Real-Time PCR
System (Applied Biosystems, USA). The gene expression level
relative to the calibrator was expressed as 2�DDCT.

2.9. Acute toxicity assay

Forty specific pathogen-free ICR mice (white, 18e22g, half fe-
males), housed in cages of five per group and fed with standard
rodent chow ad libitum, were allowed to acclimatize for 1 week.
Experiments were carried out in negative pressure stainless steel
isolators at 24±2 �C onmice that had been starved for the previous
12 hours. BEA was dissolved in 0.5% sodium carboxymethyl cellu-
lose at the concentration of 0.05 g/ml. Oral administration of 0.4ml/
10g.w BEA (equivalent the dose of 2 g/kg) was performed by gavage.
For 14 days, the mice were weighed thrice daily and observed for
signs of drug-related morbidity or mortality. After the observation
period, animals were killed by CO2 exposure followed by cervical
dislocation.

2.10. Ames test and hERG test

The Ames test and the hERG test were done by Shanghai
InnoStar Bio-Tech Co., Ltd.

2.11. BEA-resistant mutants screening

To select BEA-resistant mutants, we used a rapid selection
regime in which SC5314 cells were plated onto YEPD containing a
high concentration of BEA (512ml/ml). Only colonies of the largest
size (>1.6mm2) that had acquired robust, reproducible resistance
with MIC increasing more than 100 fold were chosen.

3. Results

3.1. Homology modeling of C. albicans ABC transporters and virtual
screening for inhibitors

The homology models of the C. albicans ABC transporters, Cdr1
and Cdr2 were built using Alignment Mode algorithm of Swiss-
Model server,21e23 taking a known mouse P-glycoprotein crystal
structure (PDB code: 3G60)10 as the template, which shares 29%
sequence identity and 50% similarity to Cdr1 and 31% sequence
identity and 51% similarity to Cdr2, respectively. As co-
crystallization showed QZ59-RRR (cyclic-tris-(R)-valineselenazole,
Mol. wt. 687.42 Daltons) and QZ59SSS (cyclic-tris-(S)-valinesele-
nazole, Mol. wt. 687.42 Daltons) can be poly-specifically bond to the
P-gp internal cavity to block its efflux function.10 Based on the
molecular weight of QZ59, we decided to screen the 3D ZINC15
database12 with >500 Daltons virtually. Meantime, QZ59-RRR and
QZ59-SSS were added into our customized database manually as
positive control. The virtual screening was carried out using the
Vina Wizard of PyRx.17 No surprise that QZ59-RRR docked nicely to
both Cdr1 and Cdr2 in a reasonable cavity positionwith the binding
affinity of �9.0 kcal/mol and �8.3 kcal/mol, respectively; while the



Table 1
Binding affinity of BEA compounds with Cdr1 and Cdr2.

ZINC Id Chemical name Binding affinity kcal/mol rmsd/ub rmsd/lb

Cdr1 Cdr2 Cdr1 Cdr2 Cdr1 Cdr2

ZINC85643633 Beauvericin �9.8 �8.4 0.000 3.036 0.000 5.568
ZINC95540658 Beauvericin A �10.3 �10.1 0.000 0.000 0.000 0.000
ZINC95607714 Beauvericin H1 �9.1 �9.5 5.899 0.000 9.572 0.000
ZINC95542396 Beauvericin H2 �9.6 �10.7 16.142 0.000 20.455 0.000
ZINC95613104 Beauvericin H3 �10.5 �10.4 0.000 0.000 0.000 0.000
ZINC95607711 Beauvericin G1 �11.0 �8.8 0.000 21.689 0.000 25.254
ZINC95613105 Beauvericin G2 �10.3 �9.6 0.000 0.000 0.000 0.000
ZINC28974061 Beauvericin G3 �10.3 �9.0 0.000 10.572 0.000 14.905

QZ59-RRR �9.0 �8.3 21.093 17.523 23.909 20.773
QZ59-SSS �8.8 �8.5 14.237 24.328 19.356 28.751
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binding affinity for QZ59-SSS is �8.3 kcal/mol and �8.5 kcal/mol,
respectively. In total, 912 compounds with more than 500 Daltons
that have available 3D information from ZINC15 database12 were
used for virtual screening. Each compound was screened for up to 9
poses for each receptor, the binding affinity of those around 16200
poses varied from �13.1 kcal/mol to �5.1 kcal/mol for Cdr1, and
from �13.8 kcal/mol to �5.2 kcal/mol for Cdr2 (Table S3). By
manually checking the reasonable docking poses with the UCSF
Chimera,24 we interestingly found that 8 BEA compounds have
even better binding affinities to the internal cavity of both Cdr1 and
Cdr2 than QZ59 compounds do (Table 1). BEA was previously re-
ported to have highly effective synergistic antifungal activity
against diverse fungal pathogens, but its precise molecular mech-
anism of synergy is yet unclear.14

The virtual screening results here indicated that BEA can block
the internal cavity of ABC transporter, and serve as potential in-
hibitors. We used PyMOL25 together with UCSF Chimera24 to
display the docking models of BEAwith Cdr1 and Cdr2, respectively
(Fig.1).
Fig.1. Docking models of BE
3.2. BEA indeed blocks the efflux function of C. albicans ABC
transporters

In order to validate the virtual screening results, we used
rhodamine 6G, a specific substrate of Cdr1 and Cdr2, as an indicator
to study the efflux function of C. albicans ABC transporters. All
testing C. albicans strains were starved for 4 hours in glucose-free
PBS, and then 3mM (final concentration) glucose was added to
reactivate the ABC transporters when specified. When SC5314 was
treated with 16mg/ml of BEA, twice the MIC, the efflux of rhoda-
mine 6G by ABC transporters was totally inhibited, even after 3mM
glucose was added (Fig. 2a, 2b). To confirm this observation,
C. albicans strains with the following genes were knocked-out:
CDR1 (strain 448), CDR2 (strain 653) and both CDR1 and CDR2
(strain 654)26,27 were subjected to the assay. Strain 653 behaved
just like SC5314 did, while the efflux of rhodamine 6G in strain 448
was also sharply inhibited, but not asmuch as in strain 653, because
the efflux function of Cdr1 is stronger than that of Cdr2 as reported
in Ref. 28. Strain 654 did not show the inhibition since CDR1 and
A with Cdr1 and Cdr2.



Fig. 2. BEA inhibits rhodamine 6G efflux in C. albicans CDR null mutants and in S. cerevisiae overexpressed CDRs. Error bars indicate standard deviation.

Y. Tong et al. / Synthetic and Systems Biotechnology 1 (2016) 158e168162



Fig. 3. ABC genes expression level with and without BEA treatment.
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CDR2 were both knocked out (Fig. 2cee).
To further investigate the effect of BEA on individual drug efflux

pumps, Saccharomyces cerevisiae strains independently over-
expressing C. albicans CDR1 (strain CDR1), C. albicans CDR2 (strain
CDR2), and C. albicans MDR1 (strain MDR1)29,30 were used to carry
out the rhodamine 6G efflux assay. We found that BEA could-
significantly inhibit rhodamine 6G efflux in strain CDR1 and strain
CDR2 (Fig. 2g, 2h). No difference of rhodamine 6G efflux was
observed in strain AD1-8u- and strain MDR1, and both served as
negative controls (rhodamine 6G is not a substrate of C. albicans
Table 2
Broad spectrum synergistic antifungal activity of BEA.

Strain MIC (mg/ml)b

BEA[a] KTC[a] KT

Candida albicans SC5314 8 0.008 0
Candida tropicalisa 16 1.6e3.2 <0
Candida kruseia >32 0.8e1.6 0
Candida parapsilosis ATCC14054 16 0.025 <0
a Clinical isolates;

b [a], alone, [c], combination with 1/4MIC of BEA;
c FICI¼ (MICdrug A in combination/MICdrug A alone)þ (MICdrug B in combination/MICdrug B alone),
Mdr1), with or without glucose (3mM) (Fig. 2f, and Fig. S1f).
Additionally, no inhibition of Nile Red efflux in strain MDR1 by BEA
was observed, which is a substrate of C. albicans Mdr1.31

Furthermore, we also observed that when BEAwas added to the
strains actively effluxing rhodamine 6G, the inhibition effect
happened immediately (within 10min) (Fig. S1). This result indi-
cated that BEA acted on ABC transporters directly, rather than
indirectly (through inhibition of gene transcription or/and trans-
lation). To confirm this observation, we first used quantitative real
time PCR to verify the mRNA levels of CDR1 and CDR2 in SC5314
before and after BEA-treatment. No significant changes in gene
transcription were observed. Moreover, we observed almost the
same transcription level of ABC transporter genes in a laboratory
acquired BEA-resistant strain BM-1 as that in its parental strain
SC5314 (Fig. 3).

The results of rhodamine 6G efflux assay indicated that BEA can
indeed specifically act on protein and inhibit the efflux function of
C. albicans ABC transporters, but not MFS transporters. It is the
mechanism of synergy we are looking for.

3.3. BEA has better synergistic antifungal effect with azoles against
multi-drug resistant C. albicans

We hypothesized that as an efflux inhibitor, BEA might have
better synergistic antifungal effect on those drug efflux pumps
overexpressed multi-drug resistant strains. We tested the combi-
nation of BEA with KTC, and BEA with itraconazole (ICZ) against
diverse Candida isolates, both drug sensitive and resistant (Table 2,
Fig. 4). As expected, we found that BEA showed synergy with both
azoles in a very low dosage on these yeast pathogens. Interestingly,
the antifungal effect of BEA and azoles was indeed better in those
drug efflux pumps overexpression strains than in drug sensitive
strains, according to the fractional inhibitory concentration index
(FICI)32 (Fig. 4).

3.4. BEA elevates intracellular calcium concentrations and triggers
cell death in C. albicans

BEA alone showed some antifungal activity as well (Table 2).
However, the inhibition of C. albicans ABC transporters is unlikely to
be responsible for this antifungal activity, because these genes are
not essential for the survival of C. albicans. Thus, there must be
another target of BEA. Chemically, BEA is a cyclic hexadepsipeptide
compound. Its ion-complexing capability might allow BEA to
transport alkaline earth metal ions and alkaline metal ions across
cell membranes. Previous studies had demonstrated that BEA is a
potent calcium ionophore, can trigger apoptosis in lung cancer cells
and human acute lymphoblastic leukemia.33,34 We want to see if
there is similar effect in C. albicans. We compared the intracellular
calcium concentrations of C. albicans SC5314 after treatment with
BEA and A23187 (a known calcium ionophore), independently.
Results showed that BEA could significantly (P<0.001) increase the
FICIc MIC (mg/ml)b FICIc

C[c] ICZ[a] ICZ[c]

.002 0.5 0.032 0.004 0.375

.064 <0.145 0.032 0.008 0.5

.025 <0.28 0.5 0.064 0.378

.0064 <0.5 0.25 0.004 0.266

(FICI>4: Antagonism; FICI<0.5: Synergy; 0.5< FICI<4: Additive).



Fig. 4. BEA synergism correlates with efflux pump expression. Quantitative real time
PCR analysis of gene transcription was performed in triplicate. Mean values from three
independent experiments are shown. Error bars indicate standard deviation.
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intracellular calcium concentration (Fig. 5a) in a clear dose- and
time-dependent manner, but the different patterns between BEA
and A23187 (Fig. S2) suggested that BEA and A23187 might have
different modes of action. In our previous work, RTA2 was found
up-regulated by increased intracellular calcium in a calcineurin-
dependent manner.35,36 After 4 hours of BEA treatment (64mg/
ml), RTA2 transcription level indeed increased about 5-fold
(P<0.001) (Fig. 5b), which confirmed our observation that BEA
can elevate the concentration of intracellular calcium. While the
transcription level of calcineurin pathway-related genes CNA, CNB,
and CRZ1 did not change significantly after BEA treatment, while
the sensitivities of BEA to the calcineurin pathway mutants did not
change either (Fig. 5c), indicating that BEA might target the up-
stream of calcineurin pathway (Fig. 5c).

Intracellular calcium, a secondary messenger, is a multi-
functional molecule, and under some conditions, it could trigger
programmed cell death.33,34 It has been demonstrated that reactive
oxygen species (ROS) is one of the typical hallmarks of early
apoptosis in C. albicans.37,38 Thus, we studied the effect of BEA on
ROS generation. Not surprising, intracellular ROS was significantly
induced (P<0.001) by BEA; hydrogen peroxide was used as a
positive control (Fig. 5d).

3.5. In vivo synergistic antifungal effect of BEA

To extend the in vitro observations, we evaluated the potential
synergistic activity of BEA with a low dosage of KTC in a cyclo-
phosphamide pre-treated immunocompromised murine model.14

Placebo-treated mice, infected with either C. albicans SC5314 or
C. parapsilosis ATCC 14054, had demonstrated significant hyper-
trophy, bleeding, and fibrinoid necrosis in kidney, heart, spleen,
lung, liver and brain tissues, yeast cells, and/or pseudohyphal
forms, were visible (Fig. S3).

High dosage (50mg/kg body weight) of KTC alone increased
mean survival time (from 8.2±0.4 d to 19.4±2.0 d) of the treated
mice, and caused a change in the relative number of histological
foci of infection, but did not reduce the fungal burden in tissues
comparing to the placebo-treated mice. Histopathologically, ab-
scesses of renal body, and necrosis of glomerulus membrane,
appeared with an absence of the renal capsule. Three types of foci
were noticed: (1) abundant yeast cells and mycelia occupied the
parenchyma which had been dissolved; (2) inflammatory cells
infiltrated with fragmentation of necrotic cells; and (3) the
boundary between the fungus and the host contained inflamma-
tory, necrotic, and intumescent cells. Similar phenomena were
observed in other organs. In this murine model, even the high
dosage of KTC alone had limited therapeutic efficacy because KTC is
fungistatic and the mice were pre-treated with immunosuppres-
sant, cyclophosphamide.

As one of the target organs in experimental candidiasis, kidney
contains the greatest number of pathogens and has themost severe
lesions, including diffuse foci of infection, acute inflammation, and
necrosis. The cortical and medullar regions displayed acute diffuse
glomerulonephritis; nephrons and proximal tubes were destroyed
or even dissolved. Interestingly, kidneys from mice treated with
0.5mg/kg BEA and KTC showed significant reduction in tissue
damage and inflammatory cell infiltration as compared to those of
placebo-treated mice control. Occasionally, abscesses of the renal
body and granulomas of the glomerulus membrane were observed
as well as limited necrosis and exfoliation of cells. Few fungal cells
were observed and they were associated with only a limited
number of inflammatory cells (mostly neutrophils, lymphocytes,
monocytes, and fibroblasts). The periphery of these foci of infection
contained numerous keratinocytes and fibrotic scars that formed
peculiar immunological rings (Fig. 6). Even though there was
limited tissue damage evident bymicroscopic evaluation. 0.5mg/kg
BEA and KTC had a significant therapeutic effect in the infected
mice. By day 12 of post-infection, calculated by [log10 cfu (cell/g)],
fungal burden of kidney was reduced by about 85%.14

3.6. Toxicity evaluation of BEA

Thus, BEA was proofed to be a high potential synergistic anti-
fungal agent, and only a HepG2 toxicity evaluation14 is not suffi-
cient to address that BEA is safe to use in clinic. An Ames test
(Salmonella typhimurium TA98 and TA100)39,40 was adopted to
evaluate the mutagenic potential of BEA. No compound related
bacterial reverse mutagenicity was observed in both metabolic
activation (þS9) and inactivation conditions (�S9) (Fig. 7a). Besides
Ames test, ten lung cancer lines with different backgrounds were
used to test the cytotoxicity of BEA, all IC50 are more than 20 mg/ml,
indicating BEA only had limited cytotoxicity (Fig. 7b), but highly
selective for Candida spp. Furthermore, we used a healthy murine
model to test the acute toxicity of BEA. All testing mice survived



Fig. 5. BEA elevates intracellular calcium and triggers the apoptosis pathway of C. albicans. The experiment was performed in triplicate. Error bars indicate standard deviation.

Fig. 6. Therapeutic effect of BEA synergizes with a low dosage of KTC on the infected mouse kidney.
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Fig. 7. Toxicity evaluation of BEA.
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without a toxic shock syndrome and observable signs of drug-
related morbidity or mortality in a 2-week-observation period af-
ter a single-dose of BEA (2 g/kg body weight) gavage. Their body
weight even increased (Fig. 7c). The effective therapeutic concen-
tration of BEA is 0.5mg/kg body weight.14 Therefore, the thera-
peutic index is very high. More and more structurally and
functionally unrelated drugs have been found that can block the
hERG potassium channel, prolong cardiac action potentials and lead
to long QT syndrome, causing cardiac disease. So, the hERG test now
is widely used as a predictor of cardiac risk in vivo41,42 for drug
discovery. The hERG test of BEA showed that 0.3mM and higher
concentration of BEA could inhibit the hERG potassium channel in a
dose dependent manner; the IC50 of BEA is about 2.55 mM (Fig. 7d),
which is considered controllable cardiac risk. All the toxicity tests
indicated that BEA has good pharmacological potential with mini-
mal toxicity.

4. Discussion

Historically, infectious diseases were a huge threat to human
health before antibiotics were discovered, but now, they are
returning with a powerful weapon, multi-drug resistance, which is
a worldwide threat.43,44 As eukaryotes, fungal pathogens share lots
of features with human cells, which restrict the antifungals dis-
covery. With prophylactic and excessive use of these limited anti-
fungals, multi-drug resistance is rapidly emerging, fungal
pathogens adopted intricate strategies to avoid the lethal effects of
antifungals,4,5 and the most well-known and studied strategy is
overexpression of drug efflux pumps to increase drug excretion.7

Among the drug efflux pumps, ABC transporters are considered
to be the major contributor to multi-drug resistance.28 Novel
antifungal drugs and therapeutic strategies are urgently needed.
But with traditional drug discovery approach, only one class of
antifungals is approved by FDA during the past two decades.9

Although the development of modern high throughput screening
methods makes a massive screening in a relatively short time
possible, it still needs special equipment, and consumes valuable
compounds. The whole process is considered as relatively time,
labor and cost consuming, not to mention how low the chance is to
finally screen out something. We definitely need new approaches
for antifungals discovery. Structure based virtual screening pro-
vides us the possibility to virtually find the specific molecules for
experimental validation in a fast and low cost way. In this study, we
demonstrated that this strategy is doable. We virtually identified
BEA as the potential inhibitor of C. albicans ABC transporters, which
was further confirmed by real experiments. In fact, BEA can re-
sensitize multi-drug resistance by blocking the drug efflux func-
tion of ABC transporters. This is the mechanism of synergistic
antifungal activity of BEA. The more the drug efflux pumps, the
better the synergistic antifungal activity of BEA. The synergistic
antifungal activity of BEA and azoles was also evaluated in vivo.

After BEAþKTC treatment, in the kidney, one of the target or-
gans of fungal infection, the amyloidosis and necrosis decreased, no
broad hemorrhages were observed, and nephrons remained intact.
Inflammatory cells were also noted, but to a lesser extent.
Remarkably, rare fungal cells were besieged by the immunological
rings formed by inflammatory cells, mostly neutrophils and lym-
phocytes. A few foci were infiltrated with monocytes and fibro-
blasts. The periphery of these foci was surrounded with
keratinocytes and fibrotic cells forming peculiar immunological
rings. We assume that the synergistic treatment kills most of the
pathogens, and the remaining pathogens probably will be taken
care of by the recovering immune system, because the effect of
cyclophosphamide can only last about 7 days after administration.
On the other hand, whether BEA can enhance the immune response
or not is under study.

It is interesting to note that enniatin, an analog of BEA, was
found to inhibit S. cerevisiae Pdr5, a homolog of Cdr1, in vitro.45 We
have determined which domains of Cdr1 and Cdr2 that enniatin
binds to inhibit the function of C. albicans ABC in vitro.46 We also
found that when CDR4, a homolog of CDR1 in Neurospora crassa,
was knocked out, the synergistic effect of BEA and a low dosage of
KTC was lost. These results indicate that BEA is an inhibitor of
fungal ABC transporters. The same effect was observed in some
cancer cells with P-glycoprotein, a Cdr1 and Cdr2 homolog.47 With
all the knowledge we got, we believe that BEA can act as a special
inhibitor of ABC transporters to reverse multi-drug resistance. This
finding could also inspire us a new and effective strategy for cancer
therapy. BEA alone is fungicidal. Previous studies demonstrated
BEA as a potent calcium ionophore in some mammalian cells.33,34

In this study, BEA was also found to act as a calcium ionophore in
C. albicans to elevate the intracellular calcium concentration.
However, it is not clear whether the increased intracellular calcium
was from the extracellular environment or from the intracellular
calcium stores. The imbalance of intracellular calcium has been
connected to apoptosis pathway. Mitochondria may act as buffers
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of the intracellular calcium concentration, and regulate vital pro-
cesses, including apoptosis.48 In our study, we found that one of the
early apoptosis markers, ROS, was sharply induced after the intra-
cellular calcium concentration increased. ROS has been considered
to be responsible for the killing effects of antibiotics in some
cases.49,50 However, the correlation between ROS and antibiotic-
killing mechanisms has become controversial.51,52 In our case,
BEA had multi-antifungal targets. ROS was partially responsible for
its fungicidal activity. Antibiotics had largely contributed to human
health, but during the wide usage, drug resistance has weakened
the antibiotic effects, and made infections that were once easily
curable very dangerous again, so we need to put more efforts to
control those drug resistant pathogens, as antibiotics discovery is
entering into the resistance era, and to find synergistic antibiotics is
one way out of the looming antibiotic-resistance crisis.53 Another
advantage of drug combination is it can take advantage of drug
resistances to reverse them.54 BEA in this study is such a vivid
example. A summary of the synergistic antifungal mechanisms of
BEA is shown in Fig. S4. Based on our work, we believe that BEA has
a great potential to be a new antifungal agent.
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