Article

Molecular Cell

GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling

Graphical Abstract

Highlights

- Small GTPase regulatory enzymes GIT and PIX bind to each other very tightly
- The GIT/PIX complex forms highly concentrated condensates via phase separation
- Formation of GIT/PIX condensates does not require other scaffold molecules
- GIT/PIX condensates are modular for signaling in distinct cellular compartments

Authors

Jinwei Zhu, Qingqing Zhou, Yitian Xia, ..., Mengjuan Peng, Rongguang Zhang, Mingjie Zhang

Correspondence

jinwei.zhu@sjtu.edu.cn (J.Z.), rgzhang@sibcb.ac.cn (R.Z.), mzhang@ust.hk (M.Z.)

In Brief

Cells often concentrate limited amounts of enzymes at specific subcellular regions for distinct functions. Zhu et al. show that the small GTPase regulatory enzymes GIT and PIX autonomously form phaseseparated condensates without the need for scaffolding molecules. GIT/PIX condensates are modular and positioned at specific cellular compartments for distinct signaling.

Zhu et al., 2020, Molecular Cell 79, 782–796 September 3, 2020 © 2020 Elsevier Inc. https://doi.org/10.1016/j.molcel.2020.07.004

Article

GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling

Jinwei Zhu,^{1,2,6})* Qingqing Zhou,^{3,6} Yitian Xia,¹ Lin Lin,^{1,2} Jianchao Li,³ Mengjuan Peng,^{1,4} Rongguang Zhang,^{1,4,*} and Mingjie Zhang^{3,6,7,*}

¹State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China

²Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

³Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

⁴School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China

⁵Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

⁶These authors contributed equally

7Lead Contact

*Correspondence: jinwei.zhu@sjtu.edu.cn (J.Z.), rgzhang@sibcb.ac.cn (R.Z.), mzhang@ust.hk (M.Z.) https://doi.org/10.1016/j.molcel.2020.07.004

SUMMARY

Enzymes or enzyme complexes can be concentrated in different cellular loci to modulate distinct functional processes in response to specific signals. How cells condense and compartmentalize enzyme complexes for spatiotemporally distinct cellular events is not well understood. Here we discover that specific and tight association of GIT1 and β -Pix, a pair of GTPase regulatory enzymes, leads to phase separation of the complex without additional scaffolding molecules. GIT1/ β -Pix condensates are modular in nature and can be positioned at distinct cellular compartments, such as neuronal synapses, focal adhesions, and cell-cell junctions, by upstream adaptors. Guided by the structure of the GIT/PIX complex, we specifically probed the role of phase separation of the enzyme complex in cell migration and synapse formation. Our study suggests that formation of modular enzyme to distinct cellular compartments for specific and optimal signaling.

INTRODUCTION

Signals are often initiated, amplified, and transduced at specific subcellular regions with temporal requirements in living cells. Spatiotemporal cell signaling requires enzymes to be concentrated at defined subcellular compartments so that limited amounts of enzymes can satisfy the required catalytic activity and substrate specificity. A traditional view is that enzymes can be concentrated at specific subcellular regions by binding to their cognate interacting proteins in accordance with the traditional thermodynamic binding equilibrium, although many cellular observations cannot be satisfactorily explained by such a traditional view. Emerging evidence suggests that formation of membrane-less compartments, also known as biomolecular condensates, via liquid-liquid phase separation is another mechanism for cells to concentrate biomolecules, including enzymes, at specific subcellular regions (Banani et al., 2017; Chen et al., 2020; Feng et al., 2019; Hyman et al., 2014; Shin and Brangwynne, 2017). Membrane-less condensates are widespread in cells and include cellular machineries such as P granules (Brangwynne et al., 2009), nucleoli (Brangwynne et al., 2011), centrosomes (Woodruff et al., 2015, 2017), pre- and post-synaptic signaling apparatuses (Wu et al., 2019; Zeng et al., 2016, 2018, 2019), and stress granules (Molliex et al., 2015; Patel et al., 2015). Membrane-less biomolecular condensates display many unique features with respect to canonical stoichiometric assemblies of molecular complexes as well as membrane-enclosed cellular compartments (Banani et al., 2017; Chen et al., 2020; Feng et al., 2019; Shin and Brangwynne, 2017).

Intuitively, formation of biomolecular condensates can massively enrich reactants and enzymes within the small volume of a subcellular compartment and, therefore, dramatically modify the chemical reactions involved. Although enormous progress has been made, the mechanisms driving formation of biomolecular condensates are far from clear. Based on many decades of research of phase separation of chemical polymers and the recent explosive development of the field of biological condensates, formation of biomolecular condensates requires the presence of multivalent interactions between the molecules in each

Article

system (Banani et al., 2017; Banjade and Rosen, 2014; Chen et al., 2020; Choi et al., 2020; Li et al., 2012). Additionally, it is commonly believed that formation of biomolecular condensates also requires highly abundant organizing molecules, such as scaffold proteins, proteins with a low-complexity sequence, or nucleic acids (Banani et al., 2017; Ditlev et al., 2018). Most biological signaling processes are highly specific and sensitive to changes in protein component or concentration under physiological conditions. Paradoxically, the majority of reported biological condensates involve or are even dominated by lowcomplexity or intrinsically disordered sequences in a diverse set of proteins (Chong et al., 2018; Jain and Vale, 2017; Wang et al., 2018). The interactions mediated by the low-complexity/ intrinsically disordered sequences are often with low specificities. Several recent studies have found that highly specific and strong molecular interactions are also important for formation of various biomolecular condensates, such as synaptic signaling machineries (Wu et al., 2019; Zeng et al., 2016, 2018), cell polarity regulatory complexes (Shan et al., 2018), and autophagosome formation (Fujioka et al., 2020); formation of these molecular assemblies requires highly abundant scaffold proteins.

GIT and PIX are Arf-specific GTPase-activating proteins (GAPs) and Rho-specific guanine nucleotide exchange factors (GEFs), respectively (Manser et al., 1998; Premont et al., 1998; Zhou et al., 2016). GIT proteins, including GIT1 and GIT2, share a conserved domain architecture that consists of an N-terminal zinc-finger ArfGAP domain, an ankyrin repeat (ANK) domain, a Spa2 homology domain (SHD), a coiled-coil domain, and a C-terminal focal adhesion targeting (FAT) domain (Figure 1A). Each PIX protein, including α -Pix and β -Pix, contains an N-terminal SH3 domain followed by the catalytic Dbl homology (DH) and pleckstrin homology (PH) domain tandem, the GIT-binding domain (GBD), and a C-terminal coiled-coil (CC) domain (Figure 1A). GIT and PIX can self-associate through their respective coiled-coil domains so that the GIT/PIX complex can form very large molecular mass oligomers (Premont et al., 2004; Zhao et al., 2000). GIT and PIX can bind to many partner proteins and regulate diverse cellular processes, such as synaptic development and signaling, focal adhesion formation and dynamics, cell polarity and migration, immune responses, and so on (Zhou et al., 2016), presumably by functioning as regulatory hubs for the Arf and Rho families of GTPases at specific cellular locations. It is perhaps not surprising that mutations of GIT or PIX can cause different human diseases, including cancer (Peng et al., 2013), psychiatric disorders (Kutsche et al., 2000; Won et al., 2011), and autoimmune diseases (Chang et al., 2014), among others. Therefore, it is of great importance to understand how the GIT/PIX complex might be assembled and how it can modulate diverse cellular processes in different cellular compartments in response to various signals.

In this work, we show that GIT and PIX bind to each other with a very high affinity (K_D, ~20 nM). We also elucidate the structural basis underlying the strong interaction between GIT and PIX. Unexpectedly, the GIT1/ β -Pix complex undergoes phase separation, forming highly concentrated enzyme condensates *in vitro* and in living cells without help from additional scaffolding molecules. GIT1/ β -Pix condensates can be recruited to focal adhesions or synapses by binding to Paxillin or Shank3, respectively.

Therefore, GIT/PIX enzymatic complexes can autonomously form modular condensates capable of being targeted to specific subcellular compartments by upstream adaptor proteins. Formation of modular enzymatic condensates provides a mechanism for cells to concentrate limited amounts of enzymes at specific subcellular regions for distinct functions.

RESULTS

The GAP-ANK-SHD Tandem of GITs Binds to $\beta\mbox{-Pix}$ with a Very High Affinity

An earlier study reported that the SHD domain of GIT1 binds to a fragment of β -Pix (amino acids [aa] 496–554) (Zhao et al., 2000). We verified this interaction using purified proteins. An isothermal titration calorimetry (ITC)-based assay showed that the SHD domain of GIT1 binds to β -Pix^{494–555} with a dissociation constant (K_D) of ${\sim}0.15~\mu M$ (Figure 1B). A 21-residue fragment of $\beta\text{-Pix}$ (aa 528-548; referred to as GBD) was found to be sufficient for binding to the GIT1 SHD (K_D, ${\sim}0.18~\mu\text{M}$) (Figures 1B and 1C). Further truncation of the β -Pix GBD at either end impaired its binding to the GIT1 SHD (Figure 1B); thus, the 21-residue GBD is the minimal and complete GIT1 binding region of β -Pix. Unexpectedly, we found that a longer fragment of GIT1 that includes the GAP domain, ANK domain, and SHD (i.e., the GAS tandem) binds to the β -Pix GBD with an \sim 10-fold higher affinity than the SHD alone (K_D, ${\sim}0.015~\mu\text{M};$ Figures 1B and 1D), indicating that the GAP domain, ANK domain, and SHD of GIT1 may form a structural supramodule for binding to β -Pix. We further showed that the GIT2 GAS tandem bound to the β-Pix GBD with a similar affinity (K_D, \sim 0.027 μ M; Figure 1B).

The Structural Basis Governing the Specific GIT/PIX Interactions

To elucidate the molecular basis underlying the specific GIT/PIX interactions, we tried to crystallize the β -Pix GBD in complex with the GAS tandem of GIT1 or GIT2. We were able to obtain crystals of the GAS tandem of GIT2 (but we were unable to do so with GIT1 GAS) in complex with a synthetic β -Pix GBD peptide, but the complex crystals only diffracted to ${\sim}4$ - to 5-Å resolution. After numerous trials, we discovered that the GIT2 GAS/ β -Pix GBD complex prepared from a GIT2 GAS mutant bearing two point mutations in a predicted loop region (S255A/S256A, denoted GAS^{S255A/S256A}; the complex is referred to as the GIT2-GAS/ β -Pix GBD complex hereafter for simplicity) could crystallize, and crystals were diffracted to 2.8-Å resolution. The complex structure was solved by the molecular replacement method using the structure of the GAP-ANK tandem of ACAP1 (PDB: 3JUE) as the search model (Table S1).

The structure of the GIT2-GAS/ β -Pix GBD complex explains how the GAP domain, ANK domain, and SHD of GIT1 form a supramodule with enhanced binding to the β -Pix GBD. The structure of the GIT2 GAP domain in the complex is very similar to that of the ASAP3 GAP domain observed in an Arf6/ASAP3 complex (Ismail et al., 2010; Figures S1A and S1B). Superimposition of the structure of GAP^{GIT2} with that of GAP^{ASAP3} shows that a conserved arginine of GAP^{GIT2}, R39^{GIT2}, aligns well with the arginine finger of ASAP3, R469^{ASAP3}, which is required for GTP hydrolysis (Figure S1B). This structural analysis is

Molecular Cell Article

Figure 1. Biochemical and Structural Characterization of GIT/PIX Interaction

(A) Schematic diagram showing the domain organization of the GIT1,2 and β-Pix proteins. The GIT/PIX interaction is indicated by a two-way arrow. The colorcoding scheme is used throughout the paper. The domain keys are also shown.

(B) The dissociation constants of the interactions between various forms of GIT and β -Pix, obtained from ITC-based assays. Binding of the WT and mutant form of GIT2 GAP-ANK-SHD (GAS) to β -Pix 528–548 (GBD) was measured using a fluorescence polarization assay because of very little heat release of the reaction. (C and D) ITC curves showing binding of β -Pix GBD to the isolated SHD domain (C) and the GAS tandem (D) of GIT1.

(E) Ribbon diagram representation of the GIT2 GAS/β-Pix GBD complex structure. Residues S255 and S256, substituted with Ala during crystal preparation, are indicated by blue asterisks.

(F) Combined surface and ribbon representation of the GIT2 GAS/β-Pix GBD complex structure showing that the GAP domain, ANK domain, and SHD couple tightly to each other, forming a supramodule.

(G) A six-helix bundle formed by αC^{ANK} of ANK, the four helices from the SHD, and the β -Pix GBD helix.

See also Figure S1 and Table S1.

consistent with previous findings showing that GIT proteins possess GAP activities toward Arf1 and Arf6 (Premont et al., 1998; Vitale et al., 2000) and that R39 is critical for GAP activity

(Hoefen and Berk, 2006; Mandiyan et al., 1999). The ANK domain contains three ANKs and a C-terminal α helix (αC^{ANK}) that takes an ${\sim}90^\circ$ bend toward $\alpha 3B$ of ANK (Figure S1C). The concave

Article

groove of ANK is unoccupied and available for potential target binding (Figures 1E and S1C). The SHD in the complex is formed by four consecutive α helices (α 1– α 4) (Figure S1D).

In line with our biochemical data, the GAP domain, ANK domain, and SHD of GIT2 interact with each other intimately to form a structural supramodule (Figures 1E and 1F). S255 and S256 are located at the loop between ANK and the SHD and are away from the GIT2/ β -Pix interface (indicated by asterisks in Figure 1E), so the mutations used to facilitate crystallization should not affect the structure of the GAS tandem and its binding to β -Pix. Our biochemical data confirmed that GIT2-GAS^{S255A/S256A} bound to the β -Pix GBD with a similar affinity compared with that of wild-type (WT) GIT2-GAS (Figure 1B). In the complex, the β -Pix GBD forms an α -helix and interacts with the GIT2 SHD. A stable six-helix bundle is formed by the β -Pix GBD α helix, four helices of the GIT2 SHD, and α C^{ANK} (Figure 1G),

Figure 2. Structural Details of the GIT2/ β -Pix Interface

(A) Detailed interactions between GIT2 GAS and the β -Pix GBD.

(B) Combined surface and ribbon representation of the GIT2/ β -Pix interface, showing that binding is mainly mediated by hydrophobic interactions and supplemented by hydrogen bonds. In the surface diagram, hydrophobic residues are shown in yellow, positively charged residues in blue, negatively charged residues in red, and the rest in gray.

(C) GST-pull down assays showing that key residues of GIT2 GAS involved in the GIT2 GAS and β -Pix GBD interface are required for the interaction. (D) GST-pull down assays showing that key residues of β -Pix GBD required for the GIT2/ β -Pix interaction.

(E) Fluorescence polarization-based measurement of binding affinities of WT and mutant GIT2 GAS to WT and mutant β -Pix GBD peptides. See also Figures S1 and S2.

indicating that formation of the GITs GAS supramodule may stabilize the conformation of the SHD and, thus, enhance the interactions between GITs and β -Pix.

The GIT2/ β -Pix interaction is mainly mediated by hydrophobic interactions. 1535, L536, V538, 1539, and Y542 from the β-Pix GBD form hydrophobic contacts with L270, L273, L277, L281, V285, L334, F337, L345, and I349 from the GIT2 SHD (Figures 2A and 2B). Additional polar interactions (e.g., the hydrogen bond formed between Y542^{β -Pix} and D348^{GIT2}; Figure 2A) further support the binding specificity of the complex. Importantly, the residues involved in the binding interface are highly conserved in GITs and PIX (Figures S2A and S2B), implying indispensable roles of the GIT/PIX interactions in the animal kingdom. A series of mutations on GIT2 GAS and the β -Pix GBD were generated to

verify the roles of these residues in complex formation. To minimize possible perturbation of the overall folding of GIT2-GAS, we substituted L273^{GIT2} in α 1 or L281^{GIT2} in α 2 with Ala. Both mutations impaired GIT2 binding to the β -Pix GBD (Figures 2C and 2E). Reciprocally, neither the I535D nor the V538D mutant of the β -Pix GBD was capable of binding to GIT2 GAS (more dramatic amino acid substitutions were chosen because the β -Pix GBD is a short peptide fragment; Figures 2D and 2E). Substitution of Y542^{β -Pix} with Asp also impaired its binding to GIT2 GAS (Figures 2D and 2E).

GIT1 Undergoes Phase Separation In Vitro and in Cells

Interestingly, we observed that the full-length WT GIT1 solution turned turbid above certain concentrations at room temperature. The turbid solution became clear again upon cooling the protein sample on ice. We sparsely labeled purified GIT1 with the Cy3

Molecular Cell Article

Figure 3. GIT1 Undergoes Phase Separation In Vitro and in Living Cells

(A) Fluorescence images showing that the full-length GIT1 protein underwent phase separation at the indicated concentrations. GIT1 was sparsely labeled by Cy3 at 1%.

(B) DIC images showing that GIT1 condensed droplets fused with each other, forming larger droplets over time.

(C) FRAP analysis showing that GIT1 in condensed droplets dynamically exchanged with those in the dilute phase.

(D) Representative images showing that expression of GIT1-GFP in HeLa cells produced many bright and spherical puncta.

(E) FRAP analysis showing that GIT1-GFP in the spherical puncta dynamically exchanged with those in the cytoplasm.

(F) Fast protein liquid chromatography (FPLC)-coupled static light-scattering analysis showing that WT GIT1-CC formed a stable dimer in solution, whereas the LP mutant of GIT1-CC is a monomer.

(G) Representative images showing that expression of the GFP-GIT1_LP mutant in HeLa cells did not form any puncta.

(H) Fluorescence images showing that the GIT1_LP mutant cannot form phase separation at a concentration of 20 μ M. Binding of the β -Pix GBD peptide, but not the β -Pix GBD_Y542D peptide, abolished phase separation of GIT1.

(I) Glutathione S-transferase (GST) pull-down assay showing that the N-terminal fragment (aa 1–371, NTD) of GIT1 binds to the C-terminal fragment of GIT1 (aa 371–end, CTD). Addition of the β -Pix GBD peptide impaired the interaction between NTD and CTD of GIT1.

(J) A model depicting the mechanism of GIT1 phase separation.

Scale bars, 5 μ m. See also Figures S3 and S4.

fluorophore and investigated the turbid solution under a confocal microscope. Cy3-GIT1 formed phase-separated droplets with spherical shapes in a concentration-dependent manner (Figure 3A). Differential interference contrast (DIC) microscopy images further showed that small droplets could fuse into larger ones over time (Figure 3B). Fluorescence recovery after photobleaching (FRAP) analysis of Cy3-GIT1 droplets showed that

GIT1 molecules can exchange freely between the condensed and dilute phases (Figure 3C). Next we tested whether GIT1 can undergo phase separation in living cells. When GIT1-GFP (i.e., GFP fused to the C-terminal end of GIT1) was overexpressed in HeLa cells, spherical GIT1-GFP puncta were observed (Figure 3D). A FRAP assay showed that GIT1-GFP within these puncta can exchange with the surrounding dilute

Molecular Cell Article

cytoplasmic population (Figure 3E), indicating that GIT1-GFP formed membrane-less condensates in cells.

We next dissected the molecular mechanism that governs GIT1 phase separation. In many biological systems, proteins containing intrinsic disordered regions (IDRs) can phase separate under physiological conditions (Banani et al., 2017; Shin and Brangwynne, 2017; Wright and Dyson, 2015). GIT1, however, does not contain long IDR stretches that have propensities to undergo phase separation (Figures S2C and S2D). Therefore, it is unlikely that GIT1 phase separation is driven by IDRs. Because the coiled-coil domain of GIT1 mediates its dimerization (Schlenker and Rittinger, 2009; Figure 3F), we first investigated whether this interaction is required for GIT1 phase separation. A triple mutant of GIT1 (L438P, L459P, L466P; referred to as the LP mutant hereafter) converted the dimeric GIT1-CC into a monomer (Figure 3F). The GIT1_LP mutant completely lost its capacity to form condensed droplets in vitro and in HeLa cells (Figures 3G, 3H, and S3), indicating that GIT1 dimer formation is essential for its phase separation. However, dimerization alone is likely not sufficient to support GIT1 phase separation because multivalent inter-molecular interactions are known to be required for phase separation of biomolecular complexes (Banani et al., 2017; Li et al., 2012). Therefore, we searched for additional molecular interaction(s) with GIT1. We found that the N-terminal region (NTD) of GIT1 (aa 1-371, GIT1-NTD corresponding to the GAS tandem) specifically binds to its C-terminal half (aa 371-end, GIT1-CTD) (Figure 3I). Because the coiled-coil domain of GIT1 adopts a parallel conformation during its dimerization, the binding between NTD and CTD of GIT1 is likely inter-molecular in nature, based on the topology of the protein conformation. Interestingly, addition of the β -Pix GBD peptide blocked the interaction between NTD and CTD of GIT1 (Figure 3I), likely because the β -Pix binding site and the CTD binding site on GIT1 NTD overlap. It is predicted that the β -Pix GBD peptide should be able to prevent GIT1 phase separation by blocking GIT1 oligomerization. Indeed, addition of the β-Pix GBD peptide abolished the phase separation of Cy3-GIT1 in vitro, whereas a mutant β -Pix GBD peptide (GBD_Y542D), which is deficient in GIT1-binding, had no effect on GIT1 phase separation (Figure 3G). We conclude that coiled coil-mediated dimerization and the interaction between GIT1 NTD and CTD contribute to the phase separation of GIT1 (Figure 3J). Notably, the longest isoforms of GIT2 and GIT1 share highly conserved domain organizations and sequence identities, but that GIT1 contains an additional octamer insertion sequence in its GAS tandem (Figure S4). We generated a GIT2-mimicking mutant of GIT1 that lacks the octamer insertion (GIT1_del8) and found that GIT1_del8, alone or in complex with PIX, displayed similar phase separation as WT GIT1 (Figure S4). Thus, GIT2, like GIT1, may also phase separate alone or in complex with PIX.

Binding of $\beta\mbox{-Pix}$ to GIT1 Promotes Phase Separation of GIT1

Because β -Pix is a strong binding partner of GIT1 and can form stable trimer via its coiled-coil domain (Schlenker and Rittinger, 2009), formation of the GIT1/ β -Pix complex might further increase GIT1 oligomerization and, in turn, promote phase separation of GIT1. Indeed, mixing equal molar amounts of Cy3-labeled

CellPress

GIT1 with Alexa 488-labeled β-Pix led to formation of condensed liquid droplets enriched with both proteins (Figure 4A). Importantly, addition of β -Pix lowered the threshold concentration for GIT1 to undergo phase separation and dramatically increased the number of condensed droplets of GIT1 (Figure 3A versus Figure 4A). β -Pix alone, at a concentration up to 100 μ M, did not undergo phase separation (Figure S3I). When GIT1-GFP and RFP- β -Pix were co-expressed in HeLa cells, we observed many bright and completely overlapping spherical puncta enriched with both proteins (Figure 4B; quantified in Figure S3). No puncta were observed in cells expressing RFP-β-Pix alone (Figures 4B and S3), indicating that β -Pix by itself could not form a condensed phase. FRAP analysis showed that the GIT1-GFP signal within the puncta could be recovered after photobleaching, but only to approximately 20% of its original intensity within a few minutes (Figure 4C). Notably, the exchange rate of GIT1 between the condensed phase and the dilute cytoplasmic phase was considerably slower than that reported in other phase separation systems in cells (Sabari et al., 2018; Woodruff et al., 2017; Zeng et al., 2016), suggesting that the GIT1/β-Pix condensates are less dynamic, possibly because of the very tight binding between the two proteins. The β -Pix_Y542D mutant has an \sim 5,000-fold reduction in binding to GIT1 (Figure S3J). Interestingly, when GIT1-GFP was co-expressed with β -Pix_Y542D, the recovery speed of GIT1-GFP signal after photobleaching was much faster than that of GIT1 co-expressed with WT β -Pix (Figures 4C and S3K). Y542 of β-Pix has been reported to be phosphorylated in cells by focal adhesion kinase or Src (Feng et al., 2006; Mayhew et al., 2007). It is tempting to speculate that phosphorylation of β -Pix at Y542 may be a regulatory switch for GIT1/ β -Pix condensates to disperse, a hypothesis that needs to be tested in the future.

We next investigated the role of β -Pix valency in promoting phase separation of the GIT1/β-Pix complex. The coiled-coil domain of β-Pix is a trimer in solution (Schlenker and Rittinger, 2009). Guided by the structure of β -Pix-CC (PDB: 2W6B), we designed a two-point mutant of β -Pix-CC (i.e., V601D, V629D; referred to as the VD mutant hereafter) capable of converting trimeric β -Pix-CC into a monomer (Figures 4D and 4E). Mixing Alexa 488-labeled monomeric β-Pix_VD with Cy3-GIT1 did not promote phase separation of GIT1; instead, it eliminated phase separation of GIT1 (Figure 4F). Additionally, when GIT1-GFP and RFP- β -Pix_VD were co-expressed in cells, no phase-separated puncta could be observed (Figure S3). It is likely that the monomeric β -Pix_VD, analogous to the β -Pix GBD peptide (Figures 3H and 3I), can specifically bind to GIT1 and, consequently, disrupt the NTD and CTD bindingmediated oligomerization of GIT1. The above data indicate that phase separation of the GIT1/ β -Pix complex is driven by formation of large molecular network contributed by coiledcoil domain-mediated multimerization of GIT1 and β -Pix as well as the very strong interaction between GIT1 and β -Pix (Figure 4G). Because GIT1 alone and GIT1/ β -Pix are able to form condensates, we constructed a phase diagram of GIT1/ $\beta\text{-Pix}$ condensates by fixing the concentration of GIT1 or β -Pix and gradually increasing the other protein to show that there are no two separated types of condensates co-existed in the mixtures (Figure S5).

Molecular Cell Article

Figure 4. Formation of GIT1/β-Pix Condensates

(A) Fluorescence images showing that a mixture of GIT1 and β-Pix (both proteins are in their full-length forms) led to phase separation at the indicated concentrations. GIT1 and β-Pix were labeled with Cy3 and Alexa 488 at 1%, respectively. Scale bar, 5 μm.

(B) Representative images showing that co-expression of GIT1-GFP and RFP-β-Pix in HeLa cells produced multiple spherical puncta, whereas RFP-β-Pix alone was diffused in the cytoplasm. Scale bar, 5 μm.

(C) FRAP analysis showing that GIT1-GFP in the puncta, when co-expressed with WT RFP-β-Pix, exchanged slowly with the protein in dilute cytoplasm. Signal recovery was also very limited. In contrast, exchange of GIT1-GFP between the puncta and cytoplasm, when co-expressed with the Y542D mutant of β-Pix, was much faster, and signal recovery was also much higher.

(D) FPLC-coupled static light-scattering analysis showing that WT β-Pix-CC forms a stable trimer in solution and that the VD mutant is a monomer.

(E) Close-up view of the interactions between V601 and V629 in the β -Pix trimer (PDB: 2W6B).

(F) Fluorescence images showing that the β -Pix_VD mutant abolished phase separation of GIT1. The assay was performed under the same condition as in Figure 3A, with each protein at a concentration of 20 μ M.

(G) A schematic showing the interaction network formed by GIT1 and β -Pix in the condensates. Scale bar, 5 μ m. See also Figures S3–S5.

Paxillin's Connection with the GIT1/β-Pix Complex

One of the best-studied roles of the GIT/PIX complexes is that in focal adhesions and cell migration. GIT1 is recruited to focal adhesions via direct binding to Paxillin (Premont et al., 2000; Turner et al., 1999). Paxillin is a multi-domain scaffold protein

composed of five leucine-rich sequences known as LD motifs and four LIM (Lin11, IsI-1, and Mec-3) domains (Figure 5A). The FAT domain of GIT1 has been reported to bind to LD2 and LD4 of Paxillin (Schmalzigaug et al., 2007; Zhang et al., 2008). We confirmed that GIT1 FAT binds to LD2 and LD4 motifs with a

Article

CellPress

Figure 5. Paxillin Promotes GIT1/β-Pix Phase Separation

(A) Schematic diagram showing the domain organization of Paxillin. Sequence alignment of the LD motifs of Paxillin is included. Identical and conserved residues are colored red and green, respectively. Residues involved in the GIT1/Paxillin interaction are indicated by orange dots. The dissociation constants of the interactions between various Paxillin LD motifs and GIT1 FAT, obtained from ITC-based assays, are shown.

(legend continued on next page)

 K_D of ${\sim}164~\mu M$ and ${\sim}3.0~\mu M$, respectively. The remaining three Paxillin LD motifs had no detectable binding to GIT1 FAT (Figures 5A and S6A–S6E).

We determined the crystal structure of GIT1 FAT in complex with Paxillin LD4 (Table S1). In the complex, GIT1 FAT adopts a stable four-helix bundle structure that is similar to the apoform FAT structure (Figures 5B and S6F). The LD4 motif forms an α helix occupying the binding site formed by $\alpha 1$ and $\alpha 4$ of GIT1 FAT (Figure 5B). The GIT1 FAT/Paxillin LD4 interface is mainly mediated by hydrophobic interactions (see Figures S6G and S6H for detailed interactions). The GIT1 FAT/Paxillin LD4 interface is similar to those in other FAT/LD interactions, such as the Pyk2/Paxillin, FAK/Paxillin, and CCM3/Paxillin complexes (Figures S6I–S6K). Determination of the GIT1 FAT/Paxillin LD4 complex allowed us to design specific point mutations on GIT1 or Paxillin, leading to complete disruption of complex formation (e.g., L669K^{GIT1}, A754K^{GIT1}, and F276D^{Paxillin}; Figure S6L). These mutations were used to investigate the role of Paxillin in targeting GIT1/ β -Pix condensates to focal adhesions and the role of the GIT1/ β -Pix condensates in regulating cell migration (see below).

Paxillin Promotes Phase Separation of the GIT1/ β -Pix Complex

Because the LD2 and LD4 motifs bind to GIT1, binding of Paxillin can further expand the valency of the GIT/PIX complex and promote its phase separation. Indeed, addition of full-length Paxillin to the GIT1/ β -Pix complex further lowered the threshold concentration for the GIT1/β-Pix complex to undergo phase separation, and Paxillin was also recruited to the condensed phase of the GIT1/ β -Pix complex (Figure 5C). Formation of condensed droplets was readily observed at an individual protein concentration of 1 μ M or lower (Figure 5C), suggesting that Paxillin/GIT1/β-Pix condensates can form at their physiological concentrations. Consistent with the imaging-based analysis, the amount of GIT1 and β -Pix proteins in the condensed phase (the "pellet" fraction) significantly increased when Paxillin was added in a sedimentation-based assay (Zeng et al., 2016) (from \sim 30% to \sim 90%; Figure 5D). To examine whether such co-puncta of three proteins may occur in living cells, GIT1-GFP, RFP-Paxillin, and Myc-β-Pix were co-expressed in HeLa

Molecular Cell Article

cells. Under a fluorescence microscope, these three proteins formed many co-localized, micrometer-sized spherical puncta in cells (Figure 5E). Notably, GIT1-mediated condensates float in the cytoplasm instead of being associated with focal adhesions, based on the z stack image analysis (Figure S7). Taken together, the above studies demonstrate that the interaction between GIT1 and Paxillin promotes phase separation of the GIT1/ β -Pix complex.

GIT1/ β -Pix Condensates Are Recruited to Focal Adhesions and Required for Cell Migration

In cells overexpressing GFP-tagged WT GIT1, endogenous β-Pix was found to be colocalized with GIT1-GFP in Paxillin-marked puncta at focal adhesions (Figure 5F, top row; quantified in Figure 5G). In sharp contrast, overexpression of a Paxillin bindingdeficient mutant of GIT1, GIT1^{A754K}-GFP, led to dramatically decreased focal adhesion localization of endogenous β -Pix (Figures 5F and 5G, second row). As internal controls, endogenous β -Pix, most likely recruited by endogenous GIT1, could be effectively targeted to focal adhesions in neighboring cells without expression of GIT1^{A754K} (Figure 5F, indicated by circles; quantified in Figure 5G) or in cells expressed with GFP alone (Figure 5F, bottom row; quantified in Figure 5G). The reduction of focal adhesion localization of $\beta\text{-Pix}$ in GIT1 $^{\text{A754K}}\text{-}\text{GFP}\text{-}\text{expressing cells}$ is likely due to the dominant-negative effect of mutant GIT1 because the mutant can bind to $\beta\mbox{-Pix}$ with a nanomolar dissociation constant. The above results indicate that GIT1/β-Pix condensates formed by endogenous levels of both enzymes can be targeted to focal adhesions by GIT1-mediated binding to Paxillin.

A critical question is whether formation of clustered GIT1/ β -Pix puncta at focal adhesions requires phase separation of GIT1/ β -Pix. To address this question, we took advantage of the monomeric GIT1_LP mutant characterized in Figures 3F–3H. The GIT1_LP mutant is incapable of undergoing phase separation (Figures 3G and 3H), but the mutant does not affect its binding to β -Pix or Paxillin (Figures 1 and 5A). Thus, the GIT1_LP mutant can be used to specifically assess the role of GIT1/ β -Pix phase separation in targeting of the complex to focal adhesions. Endogenous β -Pix could not be effectively recruited to focal

(B) Ribbon diagram representation of the GIT1 FAT/Paxillin LD4 complex structure.

(C) Fluorescence images showing that mixing Paxillin, GIT1, and β-Pix at the indicated concentrations resulted in condensed droplets with three proteins enriched simultaneously in the condensed phase. Paxillin, GIT1, and β-Pix were labeled with Cy5, Cy3, and Alexa 488, respectively, each at 1%. Scale bars, 5 μm.

(D) Representative SDS-PAGE analysis and quantification data showing the distributions of GIT1 and β -Pix in the supernatant (S) and pellet (P) with or without Paxillin in sedimentation-based assays. The final concentration of each protein was 5 μ M. Results are expressed as mean ± SD from three independent batches of sedimentation experiments.

- (G) Quantification of FA enrichment of GFP-GIT1 and its mutants as well as β -Pix, derived from experiment described in (F). For each group, 15 cells from three independent batches were imaged for quantification. The FA enrichment ratio is defined as [GFP_{FA intensity}]/[GFP_{cytoplasm intensity}] or [β -Pix_{FA intensity}]/[β -Pix_{cytoplasm intensity}] and is expressed as mean \pm SEM for each group. ns, not significant; ****p < 0.0001, using one-way ANOVA with Dunnett's multiple comparisons test.
- (H) Transwell migration assays were performed to measure the cell migration activities of HeLa cells transfected with GFP-GIT1, GFP-GIT1^{A754K}, GFP-GIT1_LP, and the GFP control.
- (I) Quantification of cell migration activities of GFP-GIT1 and its mutants from the experiment described in (H). Data are expressed as mean ± SEM for each group from six independent experiments. ***p < 0.001, **p < 0.01, using one-way ANOVA with Dunnett's multiple comparisons test. See also Figures S6 and S7.

⁽E) Representative images showing co-expression of GFP-GIT1, RFP-Paxillin, and Myc-β-Pix in HeLa cells produced many spherical puncta with all three proteins co-localized. Scale bars, 5 μm.

⁽F) GFP-GIT1 could recruit endogenous β -Pix to focal adhesions marked by an anti-Paxillin antibody in HeLa cells. The GFP-GIT1^{A754K} or GFP-GIT1^{LP} mutants impaired FA localization of β -Pix. The neighboring non-transfected cells worked as internal controls. GFP only served as the vector control of the experiment. Scale bars, 5 μ m.

Article

CellPress

Figure 6. The GIT1/β-Pix Condensate Module Can Be Recruited to Synapses and Is Required for Dendritic Spine Development

(A) Schematic diagrams showing the domain organization of Paxillin, Scribble, and Shank3. Domains that interact with GIT1 or β-Pix are indicated. "HBS" and "CBS" in Shank3 stand for Homer binding sequence and cortactin binding sequence, respectively

(B) Sedimentation-based assays showing that Scribble and Shank3 could be enriched and, in return, promote phase separation of GIT1 and β -Pix. Results are expressed as mean ± SD from three independent batches of sedimentation experiments.

(C) Fluorescence images showing that mixing GIT1, β-Pix, and 6× PSD components (PSD-95, GKAP, Shank3, SynGAP, NR2B, and Homer; see the scheme below the images) at the indicated concentrations resulted in condensed droplets with eight proteins enriched simultaneously in the condensed phase. PSD-95, Shank3, GIT1, and β-Pix were labeled with Cy5, iFluor405, Cy3, and Alexa 488, respectively, each at 1%. Scale bars, 5 µm.

(legend continued on next page)

adhesions when cells were expressing the GIT1_LP-GFP mutant (Figures 5F and 5G, third row).

Because the dynamics of focal adhesion are crucial for cell motility, one would expect that perturbation of recruitment of GIT1/ β -Pix condensates to focal adhesions would impair cell migration. Indeed, using a transwell migration assay, we found that expression of GIT1 WT significantly promoted cell migration. In contrast, expression of the GIT1^{A754K} or the GIT1_LP mutant did not promote cell migration (Figures 5H and 5I). The above data suggest that formation of GIT1/ β -Pix condensates and Pax-illin-mediated targeting of enzyme condensates to focal adhesions play a role in regulating cell motility.

GIT/PIX Condensates Regulate Neuronal Synapse Formation

In addition to focal adhesions, GIT/PIX complexes are found in other cellular locations, such as intracellular vesicles, neuronal synapses, centrioles, cell-cell junctions, and DNA damage repair foci, where they regulate diverse cellular functions (Frank and Hansen, 2008; Zhou et al., 2016). Because there are several protein-protein binding domains or motifs in both proteins, we hypothesized that GIT and PIX may use these domains or motifs to interact with various cellular proteins, which, in turn, can target GIT/PIX condensates to distinct cellular sites. For example, Scribble, a component of the Scribble/Lgl/Dlg master cell polarity regulatory complex (Bilder et al., 2000), can bind to and position β-Pix to specific subdomains in polarized cells (Audebert et al., 2004; Dow et al., 2007). Scribble contains a leucine-rich repeat (LRR) domain and four PDZ domains. The three N-terminal PDZ domains can bind to the PDZ-binding motif (PBM) of β -Pix with micromolar affinities (Lim et al., 2017; Figure 6A). In neurons, Shank family scaffold proteins can use their PDZ domains to bind to β -Pix and, thus, concentrate β -Pix to postsynaptic densities (PSDs) of excitatory synapses for Rac-dependent dendritic spine dynamic modulations (Park et al., 2003; Figure 6A).

We used a sedimentation-based assay to test whether Scribble and Shank can be enriched in GIT1/ β -Pix condensates. We used purified Scribble PDZ1-4 for this assay because the protein behaves well (e.g., it is highly soluble and non-aggregating, suitable for quantifying condensed phase formation dur-

Molecular Cell Article

ing phase separation). The Shank3 protein used in the assay contains PDZ-HBS-CBS-SAM, as described previously (Zeng et al., 2018). For simplicity, here we refer to these two proteins as Scribble and Shank3. When mixing Scribble or Shank3 with GIT1 and β -Pix at a 1:1:1 molar ratio (the concentration of each protein was 5 μ M), Scribble or Shank3 was readily recovered from the condensed phase (Figure 6B), indicating that both proteins can be recruited and enriched into GIT1/ β -Pix condensates. As we observed with Paxillin (Figure 5D), Scribble and Shank3 can promote phase separation of the GIT1/ β -Pix complex (Figure 6B).

In a fluorescence imaging assay, iFluo405-Shank3 coalesced into micrometer-sized GIT1/β-Pix condensates (Figure S8A). Furthermore, the GIT1/β-Pix complex could be integrated into excitatory PSD condensates reconstituted with PSD-95, GKAP, Shank3, SynGAP, NR2B, and Homer at low micromolar concentrations of each protein (i.e., the 6× PSD assembly in our earlier study; Zeng et al., 2018; Figure 6C). Formation of the resulting 8-component condensates is specific because addition of the Paxillin LD4 peptide to the system did not affect phase separation of these synaptic proteins (Figure S8B). Importantly, when B-Pix (the link between GIT1 and the PSD components) was dropped out in the 8× PSD mixture, GIT1 could still form condensates, but the formed condensates no longer overlapped with the 6× PSD condensates (Figure 6D). Moreover, the GIT1/ β -Pix^{Δ PBM} condensates (the β -Pix^{Δ PBM} mutant with removal of the last 4 residues cannot bind to Shank3 but can still bind to GIT1) did not overlap with the 6× PSD condensates either (Figures 6E and S8C). The above results indicate that the specific Shank3/β-Pix interaction is required for recruitment of GIT1/β-Pix condensates to PSD condensates (i.e., Shank3 functions as the adaptor for targeting GIT1/β-Pix to PSD condensates). The above finding also indicates that different biological condensates can be brought together or separated by modulating their interactions.

We next investigated whether phase separation of the GIT1/ β -Pix complex is required for its synaptic targeting and function. In cultured hippocampal neurons, the expressed GFP- β -Pix_WT showed prominent spine localization, whereas the phase separation-deficient mutant of β -Pix, β -Pix_VD, which retains its binding to GIT1 and Shank3 but is a monomer (Figures 4D–F), had a

See also Figure S8.

⁽D) Fluorescence images showing that GIT1 condensates did not overlap with the $6 \times$ PSD condensates when β -Pix was dropped out of the system (see the experimental scheme below the images).

⁽E) Fluorescence images showing that GIT1/ β -Pix^{Δ PBM} condensates did not overlap with the 6× PSD condensates. β -Pix^{*} in the experimental scheme below the images represents β -Pix^{Δ PBM}.

⁽F and I) Cultured hippocampal neurons were transfected with GFP-tagged β -Pix constructs (GFP- β -Pix_WT, GFP- β -Pix_VD, and GFP control) (F) or GFP-tagged GIT1 constructs (GIT1_WT-GFP, GIT1_LP-GFP, and GFP control) (I) at 14 days in vitro (DIV). mCherry was co-transfected with these constructs as the cell fill. After 4 days of expression, neurons were fixed and mounted for imaging. GFP- β -Pix_WT (F) or GIT1_WT-GFP (I) showed prominent spine localization, whereas the phase separation-deficient β -Pix_VD (F) or GIT1_LP-GFP (I) had a diffused distribution pattern with no significant synaptic enrichment. Notably, compared with the WT and GFP control group, neurons expressing β -Pix_VD (F) or the GIT1_LP (I) mutant showed a severe reduction in the proportion of mature spines. (G and J) Quantification of the imaging data, showing synaptic targeting of various β -Pix (G) or GIT1 (J) constructs. The synaptic enrichment ratio of β -Pix (G) or GIT1 (J) is defined as [GFP_{spine}/GFP_{shaft}]/[mCherry_{spine}/mCherry_{shaft}]. Eight neurons from three independent batches of cultures were imaged for each group, and each neuron was analyzed for four branches (i.e., n = 32). Error bars indicate \pm SEM. ****p < 0.0001. One-way ANOVA with Tukey's multiple comparisons test was used for the plot.

⁽H and K) Quantification of image data, showing a reduction of mature spines for neurons expressing the β -Pix_VD (H) or GIT1 (K) mutant. Eight neurons from three independent batches of cultures were imaged for each group for quantification. Error bars indicate \pm SEM. **p < 0.01, ***p < 0.001 One-way ANOVA with Tukey's multiple comparisons test.

Molecular Cell Article

CellPress

Modular nature of GIT/PIX condensates in various cellular processes

Figure 7. The Versatile Modular GIT/PIX Condensates Function in Diverse Cellular Processes Shown is a model depicting that the GIT/PIX condensates function as a modular organization capable of being targeted to distinct cellular compartments, such as

Shown is a model depicting that the GIT/PIX condensates function as a modular organization capable of being targeted to distinct cellular compartments, such as focal adhesions, neuronal synapses, and cell-cell junctions, enabling spatiotemporal regulation of GTPase activities. The GIT/PIX condensates are formed by strong, specific, and multivalent interactions between these two enzymes without additional scaffolding molecules.

diffused distribution pattern with no significant synaptic enrichment (Figures 6F and 6G). Notably, compared with WT β -Pix and the GFP control, neurons expressing β -PIX_VD showed a severe reduction in mature spines (Figures 6F and 6H). Similarly, in neurons expressing WT GIT1-GFP, GIT1 was enriched into punctum-like structure in dendritic spines, whereas the phase separation-deficient mutant of GIT1, GIT1_LP, had very limited spine enrichment (Figures 6I and 6J). Like β -Pix_VD-expressing neurons, neurons expressing GIT1_LP exhibited a significantly decreased portion of mature spines (Figures 6I and 6K). It should be emphasized that neither the β -Pix_VD mutant nor the GIT1_LP mutant directly affects binding between GIT and β -Pix; thus, the mutants were used to specifically probe the role of phase separation. Taken together, the data in Figure 6 indi-

cate that GIT1/ β -Pix condensates are recruited to synapses, likely via the β -Pix/Shank3 interaction, and that phase separation of the GIT1/ β -Pix complex is crucial for synaptic targeting and dendritic spine development in hippocampal neurons.

DISCUSSION

In this study, we made two unexpected findings with general implications for cell biology. First, our study reveals that enzymes by themselves (in this case, two small GTPase regulatory enzymes, GIT1 and β -Pix) can form highly specific condensates via phase separation *in vitro* and in living cells. Importantly, formation of GIT1/ β -Pix condensates does not require additional scaffold proteins or scaffold-like molecules, such as RNA and DNA, which are often essential for liquid-liquid phase separation

in most of the currently known biological condensate systems (Ditlev et al., 2018; Du and Chen, 2018; Jain and Vale, 2017). Enzymes are generally efficient catalysts and, therefore, do not exist at high concentrations in cells. However, enzymes are known to be concentrated at specific subcellular compartments to perform spatially defined cellular functions. Via liquid-liquid phase separation, enzymes such as GIT1 and β -Pix can autonomously form highly concentrated molecular assemblies, providing a novel mechanism for enriching limited amounts of enzymes into specific cellular regions for fast and spatially defined catalysis (Jang et al., 2019; Webb et al., 2017). Guided by the atomic structures of GIT1, β -Pix, and the GIT/ β -Pix complex, we also demonstrated that phase separation-mediated GIT1/β-Pix complex condensation, instead of the classical binary interaction between GIT1 and β-Pix, is required for the enzyme complex to modulate cell migration and synapse formation. It should be noted that formation of large enzyme complexes for certain defined cellular functions via classical stoichiometric interactions (e.g., locally concentrated metabolic enzyme complexes) has been known for decades (Srere, 1987). Our study provides another paradigm to show that concentrated enzyme complex condensates can form via phase separation. Phase separation-mediated formation of dense enzyme complex condensates will likely have distinct properties regarding aspects such as enzyme kinetics, substrate accessibility, threshold concentration, and regulation of enzyme assembly formation. All of these will need to be addressed in future investigations.

Second, our study demonstrates that GIT1/ β -Pix condensates can function as a highly concentrated module capable of being recruited to diverse cellular signaling compartments by binding to specific adaptor proteins, such as Paxillin, Scribble, and Shank3 (Figure 7). With this modular feature, GIT1/ β -Pix condensates can be specifically recruited to distinct subcellular compartments by different adaptors to perform multiple cellular functions. The modular feature of GIT1/ β -Pix condensates for targeting the enzyme complex to different cellular processes is, in a way, analogous to the protein module-based organization of cellular signal transduction pathways. We suggest that formation of such modular regulatory enzyme condensates via phase separation may be a common mechanism for cells to utilize limited amounts of enzymes for broad and optimal cellular function.

In contrast to most of biomolecular condensates reported in the literature, formation of GIT/ β -Pix condensates requires a very specific and strong interaction between these two proteins (K_D, ~20 nM). Such specific interaction is presumably in accordance with the specific functional roles of the two enzymes in various cellular processes. We argue that strong and specific multivalent interactions are critical for forming functionally specific biomolecular condensates in living cells, as we have demonstrated here and also previously in neuronal synapses (Zeng et al., 2016, 2018). Numerous studies in the past have illustrated the critical roles played by weak and multivalent interactions in phase separation of biomolecules. Nonetheless, it is hard to envisage that formation of functionally specific biological signaling condensates is predominantly dictated by promiscuous biomolecular interactions. It is also puzzling how genetic

Molecular Cell Article

mutations that only lead to mild changes in binding can cause human diseases, particularly when considering that the interactions involved are weak and promiscuous. We propose that strong and specific interactions, together with weak but often multivalent bindings, allow formation of highly specific biomolecular condensates. These assemblies may have very low phase separation concentration thresholds and broad dynamic properties (Fujioka et al., 2020). For this reason, we recommend use of full-length proteins each at their physiological concentrations to investigate biomolecular condensates formation whenever possible. Much remains to be uncovered in the exciting and emerging field of phase separation-induced membrane-less biomolecular condensates formation.

STAR***METHODS**

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead Contact
 - Materials Availability
 - Data and Code Availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Bacterial strain
 - Cell Culture
- METHOD DETAILS
 - Constructs and peptides
 - Protein expression and purification
 - Isothermal titration calorimetry (ITC) assay
 - GST-pull down assay
 - Fast protein liquid chromatography (FPLC) coupled with static light scattering
 - Fluorescence polarization assay
 - Crystallization, Data collection and Structure determination
 - O Protein labeling with fluorophore
 - In vitro phase transition assay
 - Fluorescence recovery after photo-bleaching assay
 - HeLa cell imaging, focal adhesion localization and cell migration
 - Primary hippocampal neuron culture and imaging
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j. molcel.2020.07.004.

ACKNOWLEDGMENTS

We thank Shanghai Synchrotron Radiation Facility (SSRF, China) BL19U1 for X-ray beam time; the staff members of the Large-Scale Protein Preparation System and Molecular Imaging System at the National Facility for Protein Science in Shanghai (NFPS), Zhangjiang Lab, China for providing technical support and assistance with data collection and analysis; Yuan Shang (University of Arizona, USA) for help during structure determination; Wenyu Wen (Fudan University, China) for providing assistance with the fluorescence polarization assay; and Jinchuan Zhou for critical reading of the manuscript. This work

Molecular Cell Article

was supported by grants from the National Key R&D Program of China (2018YFA0507900 to J.Z., 2019YFA0508402 to M.Z., and 2017YFA0504901 to R.Z.), a grant from the National Natural Science Foundation of China (31770779 to J.Z.), a grant from the Chief Scientist Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (to R.Z.), and grants from RGC of Hong Kong (AoE-M09-12 and C6004-17G to M.Z.) M.Z. is a Kerry Holdings Professor in Science, a Croucher Foundation Senior Fellow, and a Senior Fellow of IAS at HKUST.

AUTHOR CONTRIBUTIONS

J.Z., Q.Z., and M.Z. designed the study. J.Z., Q.Z., Y.X., and M.P. performed the experiments. Y.X., M.P., L.L., and J.L. carried out X-ray data collection and structure determination. J.Z., Q.Z., Y.X., L.L., J.L., R.Z., and M.Z. analyzed the data. J.Z., Q.Z., and M.Z. drafted the manuscript. J.Z. and M.Z. coordinated the project. All authors approved the final version of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 14, 2020 Revised: June 2, 2020 Accepted: July 3, 2020 Published: August 10, 2020

REFERENCES

Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. *66*, 213–221.

Audebert, S., Navarro, C., Nourry, C., Chasserot-Golaz, S., Lécine, P., Bellaiche, Y., Dupont, J.L., Premont, R.T., Sempéré, C., Strub, J.M., et al. (2004). Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr. Biol. *14*, 987–995.

Bai, M., Pang, X., Lou, J., Zhou, Q., Zhang, K., Ma, J., Li, J., Sun, F., and Hsu, V.W. (2012). Mechanistic insights into regulated cargo binding by ACAP1 protein. J. Biol. Chem. *287*, 28675–28685.

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. *18*, 285–298.

Banjade, S., and Rosen, M.K. (2014). Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123.

Bilder, D., Li, M., and Perrimon, N. (2000). Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116.

Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science *324*, 1729–1732.

Brangwynne, C.P., Mitchison, T.J., and Hyman, A.A. (2011). Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA *108*, 4334–4339.

Chang, D., Gao, F., Slavney, A., Ma, L., Waldman, Y.Y., Sams, A.J., Billing-Ross, P., Madar, A., Spritz, R., and Keinan, A. (2014). Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS ONE *9*, e113684.

Chen, X., Wu, X., Wu, H., and Zhang, M. (2020). Phase separation at the synapse. Nat. Neurosci. 23, 301–310.

Choi, J.M., Holehouse, A.S., and Pappu, R.V. (2020). Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu. Rev. Biophys. *49*, 107–133.

Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G.M., Cattoglio, C., Heckert, A., Banala, S., Lavis, L., Darzacq, X., and Tjian, R. (2018). Imaging dy-

namic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555.

Ditlev, J.A., Case, L.B., and Rosen, M.K. (2018). Who's In and Who's Out-Compositional Control of Biomolecular Condensates. J. Mol. Biol. *430*, 4666–4684.

Dow, L.E., Kauffman, J.S., Caddy, J., Zarbalis, K., Peterson, A.S., Jane, S.M., Russell, S.M., and Humbert, P.O. (2007). The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene *26*, 2272–2282.

Du, M., and Chen, Z.J. (2018). DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science *361*, 704–709.

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. *60*, 2126–2132.

Feng, Q., Baird, D., Peng, X., Wang, J., Ly, T., Guan, J.L., and Cerione, R.A. (2006). Cool-1 functions as an essential regulatory node for EGF receptorand Src-mediated cell growth. Nat. Cell Biol. *8*, 945–956.

Feng, Z., Chen, X., Wu, X., and Zhang, M. (2019). Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 294, 14823–14835.

Frank, S.R., and Hansen, S.H. (2008). The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin. Cell Dev. Biol. 19, 234–244.

Fujioka, Y., Alam, J.M., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A.I., Knorr, R.L., Suzuki, K., Ohsumi, Y., and Noda, N.N. (2020). Phase separation organizes the site of autophagosome formation. Nature *578*, 301–305.

Hoefen, R.J., and Berk, B.C. (2006). The multifunctional GIT family of proteins. J. Cell Sci. *119*, 1469–1475.

Hoellerer, M.K., Noble, M.E., Labesse, G., Campbell, I.D., Werner, J.M., and Arold, S.T. (2003). Molecular recognition of paxillin LD motifs by the focal adhesion targeting domain. Structure *11*, 1207–1217.

Hyman, A.A., Weber, C.A., and Jülicher, F. (2014). Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. *30*, 39–58.

Ismail, S.A., Vetter, I.R., Sot, B., and Wittinghofer, A. (2010). The structure of an Arf-ArfGAP complex reveals a Ca2+ regulatory mechanism. Cell *141*, 812–821.

Jain, A., and Vale, R.D. (2017). RNA phase transitions in repeat expansion disorders. Nature 546, 243–247.

Jang, S., Xuan, Z., Lagoy, R.C., Jawerth, L.M., Gonzalez, I., Singh, M., Prashad, S., Kim, H.S., Patel, A., Albrecht, D.R., et al. (2019). The Glycolytic Protein Phosphofructokinase Dynamically Relocalizes into Subcellular Compartments with Liquid-like Properties in vivo. bioRxiv. https://doi.org/10. 1101/636449.

Kutsche, K., Yntema, H., Brandt, A., Jantke, I., Nothwang, H.G., Orth, U., Boavida, M.G., David, D., Chelly, J., Fryns, J.P., et al. (2000). Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat. Genet. *26*, 247–250.

Li, X., Ji, W., Zhang, R., Folta-Stogniew, E., Min, W., and Boggon, T.J. (2011). Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J. Biol. Chem. *286*, 26138–26147.

Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature *483*, 336–340.

Lim, K.Y.B., Gödde, N.J., Humbert, P.O., and Kvansakul, M. (2017). Structural basis for the differential interaction of Scribble PDZ domains with the guanine nucleotide exchange factor β -PIX. J. Biol. Chem. 292, 20425–20436.

Mandiyan, V., Andreev, J., Schlessinger, J., and Hubbard, S.R. (1999). Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta. EMBO J. *18*, 6890–6898.

Manser, E., Loo, T.H., Koh, C.G., Zhao, Z.S., Chen, X.Q., Tan, L., Tan, I., Leung, T., and Lim, L. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell *1*, 183–192.

Molecular Cell Article

Mayhew, M.W., Jeffery, E.D., Sherman, N.E., Nelson, K., Polefrone, J.M., Pratt, S.J., Shabanowitz, J., Parsons, J.T., Fox, J.W., Hunt, D.F., and Horwitz, A.F. (2007). Identification of phosphorylation sites in betaPIX and PAK1. J. Cell Sci. *120*, 3911–3918.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Cryst. *40*, 658–674.

Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006). HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. *62*, 859–866.

Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell *163*, 123–133.

Park, E., Na, M., Choi, J., Kim, S., Lee, J.R., Yoon, J., Park, D., Sheng, M., and Kim, E. (2003). The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem. *278*, 19220–19229.

Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell *162*, 1066–1077.

Peng, H., Dara, L., Li, T.W., Zheng, Y., Yang, H., Tomasi, M.L., Tomasi, I., Giordano, P., Mato, J.M., and Lu, S.C. (2013). MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology *57*, 2299–2313.

Premont, R.T., Claing, A., Vitale, N., Freeman, J.L., Pitcher, J.A., Patton, W.A., Moss, J., Vaughan, M., and Lefkowitz, R.J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA *95*, 14082–14087.

Premont, R.T., Claing, A., Vitale, N., Perry, S.J., and Lefkowitz, R.J. (2000). The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem. 275, 22373–22380.

Premont, R.T., Perry, S.J., Schmalzigaug, R., Roseman, J.T., Xing, Y., and Claing, A. (2004). The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell. Signal. *16*, 1001–1011.

Sabari, B.R., Dall'Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al. (2018). Coactivator condensation at super-enhancers links phase separation and gene control. Science *361*, eaar3958.

Schlenker, O., and Rittinger, K. (2009). Structures of dimeric GIT1 and trimeric beta-PIX and implications for GIT-PIX complex assembly. J. Mol. Biol. *386*, 280–289.

Schmalzigaug, R., Garron, M.L., Roseman, J.T., Xing, Y., Davidson, C.E., Arold, S.T., and Premont, R.T. (2007). GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cell. Signal. *19*, 1733–1744.

Shan, Z., Tu, Y., Yang, Y., Liu, Z., Zeng, M., Xu, H., Long, J., Zhang, M., Cai, Y., and Wen, W. (2018). Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nat. Commun. *9*, 737.

Shin, Y., and Brangwynne, C.P. (2017). Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382.

Srere, P.A. (1987). Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. *56*, 89–124.

Turner, C.E., Brown, M.C., Perrotta, J.A., Riedy, M.C., Nikolopoulos, S.N., McDonald, A.R., Bagrodia, S., Thomas, S., and Leventhal, P.S. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol. *145*, 851–863.

Vanarotti, M.S., Miller, D.J., Guibao, C.D., Nourse, A., and Zheng, J.J. (2014). Structural and mechanistic insights into the interaction between Pyk2 and paxillin LD motifs. J. Mol. Biol. *426*, 3985–4001.

Vitale, N., Patton, W.A., Moss, J., Vaughan, M., Lefkowitz, R.J., and Premont, R.T. (2000). GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem. 275, 13901–13906.

Wang, J., Choi, J.M., Holehouse, A.S., Lee, H.O., Zhang, X., Jahnel, M., Maharana, S., Lemaitre, R., Pozniakovsky, A., Drechsel, D., et al. (2018). A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell *174*, 688–699.e16.

Webb, B.A., Dosey, A.M., Wittmann, T., Kollman, J.M., and Barber, D.L. (2017). The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J. Cell Biol. *216*, 2305–2313.

Won, H., Mah, W., Kim, E., Kim, J.W., Hahm, E.K., Kim, M.H., Cho, S., Kim, J., Jang, H., Cho, S.C., et al. (2011). GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat. Med. *17*, 566–572.

Woodruff, J.B., Wueseke, O., Viscardi, V., Mahamid, J., Ochoa, S.D., Bunkenborg, J., Widlund, P.O., Pozniakovsky, A., Zanin, E., Bahmanyar, S., et al. (2015). Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science *348*, 808–812.

Woodruff, J.B., Ferreira Gomes, B., Widlund, P.O., Mahamid, J., Honigmann, A., and Hyman, A.A. (2017). The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin. Cell *169*, 1066–1077.e10.

Wright, P.E., and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. *16*, 18–29.

Wu, X., Cai, Q., Shen, Z., Chen, X., Zeng, M., Du, S., and Zhang, M. (2019). RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. Mol. Cell *73*, 971–984.e5.

Zeng, M., Shang, Y., Araki, Y., Guo, T., Huganir, R.L., and Zhang, M. (2016). Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell *166*, 1163–1175.e12.

Zeng, M., Chen, X., Guan, D., Xu, J., Wu, H., Tong, P., and Zhang, M. (2018). Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell *174*, 1172–1187.e16.

Zeng, M., Diaz-Alonso, J., Ye, F., Chen, X., Xu, J., Ji, Z., Nicoll, R.A., and Zhang, M. (2019). Phase Separation-Mediated TARP/MAGUK Complex Condensation and AMPA Receptor Synaptic Transmission. Neuron *104*, 529–543.e6.

Zhang, Z.M., Simmerman, J.A., Guibao, C.D., and Zheng, J.J. (2008). GIT1 paxillin-binding domain is a four-helix bundle, and it binds to both paxillin LD2 and LD4 motifs. J. Biol. Chem. *283*, 18685–18693.

Zhao, Z.S., Manser, E., Loo, T.H., and Lim, L. (2000). Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. *20*, 6354–6363.

Zhou, W., Li, X., and Premont, R.T. (2016). Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J. Cell Sci. *129*, 1963–1974.

Zhu, J., Zhou, Q., Shang, Y., Li, H., Peng, M., Ke, X., Weng, Z., Zhang, R., Huang, X., Li, S.S.C., et al. (2017). Synaptic Targeting and Function of SAPAPs Mediated by Phosphorylation-Dependent Binding to PSD-95 MAGUKs. Cell Rep. *21*, 3781–3793.

Article

STAR***METHODS**

KEY RESOURCES TABLE

	SOLIRCE	
Antibodies	JUNCE	IDENTIFIEN
Anti-Flag antibody	Sigma-Aldrich	Cat# E1804
Anti-Paxillin antibody	BD Biosciences	Cat# 554002
Anti- β -Pix antibody	Millipore Sigma	Cat# 07-1450-I
Anti-Myc antibody	DSHB	Cat# 9F-10
Anti-Vinculin antibody	Sigma-Aldrich	Cat#//9131
Alexa Eluor 647 donkev anti-mouse	Thermo Fisher	Cat# A31571
Alexa Fluor 594 donkey anti-rabbit	Thermo Fisher	Cat# A21207
Bacterial and Virus Strains		
Escherichia coli BL21 (DE3)	TRANSGEN BIOTECH	Cat# CD601
Escherichia coli BL21 (Codon Plus)	Agilent	Cat# 230240
Chemicals Peptides and Recombinant Proteins		
Dulbecco's Modified Eagle Medium (DMEM)	Thermo Fisher	Cat# 11995065
Fetal bovine serum (FBS)	Thermo Fisher	Cat# 16000044
Alexa Fluor 488 NHS ester	Thermo Fisher	Cat# A20000
Cy3 NHS ester	AAT Bioquest	Cat# 271
Cy5 NHS Ester	AAT Bioquest	Cat# 280
Fluorescein-5-isothicyanate	Thermo Fisher	Cat# F1907
Recombinant protein: GIT1 full length (aa 1-770)	This paper	N/A
Recombinant protein: GIT1 GAS (aa 1-370)	This paper	N/A
Recombinant protein: GIT1 FAT (aa 640-770)	This paper	N/A
Recombinant protein: GIT1 CC (aa 425-485)	This paper	N/A
Recombinant protein: GIT1 CC_LP (aa 425-485, L438P, L459P, L466P)	This paper	N/A
Recombinant protein: GIT1 _LP (aa 1-770, L438P, L459P, L466P)	This paper	N/A
Recombinant protein: GIT1 SHD (aa 263-730)	This paper	N/A
Recombinant protein: GIT1 GAS-CC (aa 1-485)	This paper	N/A
Recombinant protein: GIT1_del8 (aa 1-770, delete 254-261)	This paper	N/A
Recombinant protein: GIT2 GAS (aa 1-361)	This paper	N/A
Recombinant protein: GIT2 GAS_S255A/S256A	This paper	N/A
Recombinant protein: GIT2 GAS_L273A	This paper	N/A
Recombinant protein: GIT2 GAS_L281A	This paper	N/A
Recombinant protein: GIT2 GAS_D348A	This paper	N/A
Recombinant protein: β-Pix _494-555	This paper	N/A
Recombinant protein: β-Pix GBD (aa 528-548)	This paper	N/A
Recombinant protein: β-Pix GBD_Y542D	This paper	N/A
Recombinant protein: β-Pix GBD_I535D	This paper	N/A
Recombinant protein: β-Pix_528-543	This paper	N/A
Recombinant protein: β-Pix_494-548	This paper	N/A
Recombinant protein: β-Pix_CC (aa 588-646)	This paper	N/A
Recombinant protein: β-Pix_CC_VD (aa 588-646, V601D/V629D)	This paper	N/A
Recombinant protein: β-Pix full length (aa 1-646)	This paper	N/A

(Continued on next page)

Molecular Cell Article

FIA.CIS.MT & RESOURCESOURCEIDENTIFIERRecombinant protein: [PRx, Y542D (an 1-646, Y542D)This paperN/ARecombinant protein: GHT FAT-GS-Pasilin L04 (GHT 840- TVC/GS),-Pasilin full ength (an 1-591)This paperN/ARecombinant protein: Pasilin full ength (an 1-591)This paperN/ARecombinant protein: Pasilin LD (an 1-16)This paperN/ARecombinant protein: Pasilin LD (an 21-16)This paperN/ARecombinant protein: Pasilin LD (an 21-82)This paperN/ARecombinant protein: Sharki NPCA/CTSAKT)This paperN/ARecombinant protein: Sharki NPCA/CTSAKT)This paperN/ARecombinant protein: Sharki NPCA/CTSAKT)This paperN/AReportiel LPAX (SBD (VAEDA/LIK/EAD/TSAKT)This paperN/APeptide LPAX (SBD (VAEDA/LIK/EAD/TSAKT)This paperN/APepti	Continued		
Recombinant protein: (I-Pix, VSI (a) 1-646, VSI DLV0250)This paperN/ARecombinant protein: (G11 FAT-G3-Paxillin L04 (G111 640)This paperN/ARecombinant protein: Paklin L01 (a) 1-16)This paperN/ARecombinant protein: Paklin L01 (a) 1-16)This paperN/ARecombinant protein: Paklin L03 (a) 18-158)This paperN/ARecombinant protein: Paklin L03 (a) 210-234)This paperN/ARecombinant protein: Paklin L03 (a) 210-234)This paperN/ARecombinant protein: Paklin L03 (a) 210-234)This paperN/ARecombinant protein: Paklin L04 (a) 251-234)This paperN/ARecombinant protein: Paklin L03 (a) 210-234)This paperN/ARecombinant protein: Paklin L04 (a) 251-236This paperN/ARecombinant protein: Senthe PC21 (a)	REAGENT or RESOURCE	SOURCE	IDENTIFIER
Recombinant protein: In-Pr., V4220 (as 1-64, V420) This paper N/A Recombinant protein: Pacillin L04 (as 1-591) This paper N/A Recombinant protein: Pacillin L01 (as 1-16) This paper N/A Recombinant protein: Pacillin L01 (as 1-8) This paper N/A Recombinant protein: Pacillin L02 (as 138-158) This paper N/A Recombinant protein: Pacillin L05 (as 210-234) This paper N/A Recombinant protein: Pacillin L05 (as 210-234) This paper N/A Recombinant protein: Sankis MPO2-HBS-CBS-SAM Zong et al., 2018 N/A Recombinant protein: Stankis MPO2-HBS-CBS-SAM Zong et al., 2018 N/A Paptide: J-Pix GBO, V5420 (AEEDAOLIK/NEAVTSAKT) This paper PDB code: SIMU Christature of G11/Pax Complex This paper PDB code: SIMU Christature of G11/Pax Com	Recombinant protein: β-Pix_VD (aa 1-646, V601D/V629D)	This paper	N/A
Recombinant protein: GTI PAT-GS-Paxilin LD4 (GTI 1640- This paper N/A Recombinant protein: Paxillin Set 381-159) This paper N/A Recombinant protein: Paxillin CB (as 136-159) This paper N/A Recombinant protein: Paxillin LG (as 136-159) This paper N/A Recombinant protein: Paxillin LG (as 215-28) This paper N/A Recombinant protein: Paxillin LG (as 215-28) This paper N/A Recombinant protein: Paxillin LG (as 215-28) This paper N/A Recombinant protein: Paxillin LG (as 215-28) This paper N/A Recombinant protein: Paxillin LG (as 215-28) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombinant protein: Stable IPC1 (as 715-1196) This paper N/A Recombined protein: Carl (1668019	Recombinant protein: β-Pix_Y542D (aa 1-646, Y542D)	This paper	N/A
Recombinant protein: Paxilin full length (a. 1 - 591)This paperN/ARecombinant protein: Paxilin LD2 (a. 138 - 158)This paperN/ARecombinant protein: Paxilin LD2 (a. 238 - 234)This paperN/ARecombinant protein: Paxilin LD4 (a. 281 - 282)This paperN/ARecombinant protein: Paxilin LD5 (a. 231 - 244)This paperN/ARecombinant protein: Shahe PC14 (a. 715-1199)This paperN/ARecombinant protein: Shahe PC14 (a. 715-1199)This paperN/ARecombinant protein: Shahe PC14 (a. 715-1199)This paperN/APeptide: J-Pix GBD (ALEEDAOILKVIEAYCTSAKT)This paperN/APeptide: J-Pix GBD (ALEEDAOILKVIEAYCTSAKT)This paperN/APeptide: J-Pix GBD (SAE2) (ALEEDAOILKVIEAYCTSAKT)This paperN/ACritical Commercial AssaysInvitrogenCattf 11686019VafetPromegaCattf E481Deposited Tradition onplexThis paperPDB code: SJMTCrystal structure of GTT/PARIlin complexThis paperPDB code: SJMUCrystal structure of GTT/PARIlin LD4 complexPaper et al. 2014PDB code: R04Crystal structure of CAMP-Paxillin LD4 complexBeital., 2011PDB code: SIMUCrystal structure of GTT ologid-colSchlenker and Ritinger. 2009PDB code: 2WGBCrystal structure of GTT ologid-colSchlenker and Ritinger. 2009PDB code: SUMICrystal structure of GAMP-Paxillin LD4 complexBeital., 2011PDB code: R04Crystal structure of GAMP-Paxillin LD4 complexBeital., 2012PDB code: 2WGB <td>Recombinant protein: GIT1 FAT-GS-Paxillin LD4 (GIT1 640- 770-(GS)₅-Paxillin 261-282)</td> <td>This paper</td> <td>N/A</td>	Recombinant protein: GIT1 FAT-GS-Paxillin LD4 (GIT1 640- 770-(GS) ₅ -Paxillin 261-282)	This paper	N/A
Recombinant protein: Paxillin LD1 (as 1-16) This paper N/A Recombinant protein: Paxillin LD2 (as 138-158) This paper N/A Recombinant protein: Paxillin LD4 (as 261-282) This paper N/A Recombinant protein: Paxillin LD4 (as 261-282) This paper N/A Recombinant protein: Sank3 NPD2-HBS-GBS-SAM Zang et al., 2018 N/A Recombinant protein: Sank3 NPD2-HBS-GBS-SAM Zang et al., 2018 N/A Recombinant protein: Sank3 NPD2-HBS-GBS-SAM Zang et al., 2018 N/A Patide: J-PA: GBD_XEED20LKVEACTSAKT) This paper N/A Patide: J-PA: GBD_XEED20LKVEACTSAKT) This paper N/A Chical Commercial Sassys Cat# 11668019 Cat# 11668019 Viafect Promega Cat# 11668019 Crystal structure of GTT/PAx Complex This paper PDB code: SIMT Crystal structure of GTT/PAx This paper PDB code: SIMT Crystal structure of GTT/PAx This paper PDB code: SIMT Crystal structure of GTT/PAx Zang et al., 2008 PDB code: SIMG Crystal structure of GTM PAX Game et al., 2014 PDB code: SIMG <td>Recombinant protein: Paxillin full length (aa 1- 591)</td> <td>This paper</td> <td>N/A</td>	Recombinant protein: Paxillin full length (aa 1- 591)	This paper	N/A
Recombinant protein: Pacilin LD2 (pa 138: 158)This paperNARecombinant protein: Pacilin LD3 (pa 210: 234)This paperN/ARecombinant protein: Pacilin LD5 (pa 331: 346)This paperN/ARecombinant protein: Shank3 NPD2-HBS-CBS-SAMZeng et al., 2018N/ARecombinant protein: Schuble PD21-4 (pa 71-196)This paperN/APaptide: J-Pix GBD (ALEDAQILK/IEA/CTSAKT)This paperN/APeptide: J-Pix GBD (ALEDAQILK/IEA/CTSAKT)This paperN/APeptide: J-Pix GBD (ALEDAQILK/IEA/CTSAKT)This paperN/APeptide: J-Pix GBD (ALEDAQILK/IEA/CTSAKT)This paperN/APeptide: J-Pix GBD (ALEDAQILK/IEA/CTSAKT)This paperN/ACritical Commercial AssaysInvitrogenCatt/ 168019Upofectamine2000 transfection kitInvitrogenCatt/ 168019VafactPromegaCatt/ 168019Crystal structure of GIT1/Pacillin complexThis paperPDE code: 6JMTCrystal structure of GIT1/Pacillin complexThis paperPDE code: 6JMUCrystal structure of GIT1/Pacillin ComplexVaneroti et al., 2003PDE code: 3JUECrystal structure of GIT1/Pacillin LD4 complexLi et al., 2014PDE code: 3JUECrystal structure of GIT1 colled-coilSchlenker and Rittinger, 2009PDE code: 3JUECrystal structure of GIT1 colled-coilSchlenker and Rittinger, 2009PDE code: 3JUECrystal structure of GIT1 colled-coilSchlenker and Rittinger, 2009PDE code: 3JUECrystal structure of GIT1 colled-coilSchlenker and Rittinger, 2009PDE	Recombinant protein: Paxillin LD1 (aa 1- 16)	This paper	N/A
Recombinant protein: Pakilla L02 (aa 210- 224)This paperN/ARecombinant protein: Pakilla L04 (aa 261- 282)This paperN/ARecombinant protein: Pakilla L04 (aa 215- 136)This paperN/ARecombinant protein: Schlable PD21-14 (aa 715- 1196)This paperN/APeptide: Ji-Pix GBD (ALEEDAOLLKPACYTSAKT)This paperCat# 116#0019ValatetPromogaCat# 116#0019ValatetPoromegaCat# 1498019ValatetPoromegaCat# 1498019ValatetPoromegaCat# 1498019ValatetPoromegaCat# 1498019ValatetPoromegaCat# 1498019ValatetPoromegaCat# 1498019ValatetOf GT1/Paxillin ComplexThis paperPDB Code: GMUCrystal structure of GT1/Paxillin LD4 complexThis paperPDB Code: SUOCrystal structure of FAK/Paxillin LD4 complexL du. 2011PDB code: SUGCrystal structure of CMXPAxillin LD4 complexL du. 2011PDB code: SUGCrystal structure of GT1 CatCat# CCLSchlenker and Rittinger. 2009PDB code: SUGCrystal structure of FAK/Paxillin LD4 complexL du. 2011PDB code: SUGCrystal structure of GT1 CalcCat# CCLSchlenker and Rittinger. 2009PDB code: SUGA	Recombinant protein: Paxillin LD2 (aa 138- 158)	This paper	N/A
Becombinant protein: Pacillin LD4 (az 261: 282)This paperNABecombinant protein: Pacillin LD5 (az 331: 346)This paperNABecombinant protein: Sharki SMP2-HBS-CBS-SAMZeng et al., 2018NABecombinant protein: Schuki SMP2-HBS-CBS-SAMZeng et al., 2018NABecombinant protein: Schuki SMP2-HBS-CBS-SAMZeng et al., 2018NAPeptide: JP-Nx GBD (ALEEDAOLIKVIEANCTSAKT)This paperNAPeptide: JP-Nx GBD (ALEEDAOLIKVIEANCTSAKT)This paperNAPeptide: JP-Nx GBD (ALEEDAOLIKVIEANCTSAKT)This paperNAPeptide: JP-Nx GBD (ALEEDAOLIKVIEANCTSAKT)This paperCat# 11668019ValectPromegaCat# E4981Deposited DataThis paperPDB code: SIMTCrystal structure of GIT1/Pacillin complexThis paperPDB code: SIMUCrystal structure of GIT1/Pacillin LD4 complexVanarotti et al., 2003PDB code: SIMUCrystal structure of FA/Pacillin LD4 complexVanarotti et al., 2014PDB code: SIMUCrystal structure of GIT1 Pacillin LD4 complexLi et al., 2011PDB code: SIMOCrystal structure of GAP-ANKBal et al., 2012PDB code: SIMOCrystal structure of GIT1 Colled-collSchlenker and Rittinger, 2009PDB code: SIMOCrystal structure of GIT1 Pacillin LD4 complexLi et al., 2011PDB code: SIMOCrystal structure of GIT1 Pacillin LD4 complexLi et al., 2012PDB code: SIMOCrystal structure of GIT1 Pacillin LD4 complexSchlenker and Rittinger, 2009PDB code: SIMOCrystal structure of GIT1 Pacillin	Recombinant protein: Paxillin LD3 (aa 210- 234)	This paper	N/A
Recombinant protein: Pacilla DS (as 31: 346)This paperN/ARecombinant protein: Schible PS-CBS-SAMZeng et al., 2018N/ARecombinant protein: Schible PS-CBS-SAMZeng et al., 2018N/APeptide: Ju-Pix GBD (MLEEDAOILK/VIEAVCTSAKT)This paperN/APeptide: Ju-Pix GBD (MLEEDAOILK/VIEAVCTSAKT)This paperN/APeptide: Paint-DA (ATRELDEMASLSDFKM)This paperN/ACritical Commercial AssaysEEUpofectamine2000 transfection kitInvitrogenCat# 1608019ViafectOca# E4081Cat# 54081Deposited DataEECrystal structure of GIT1/Paxillin complexThis paperPDB code: SUMTCrystal structure of GIT1/Paxillin complexThis paperPDB code: SUMTCrystal structure of GIT2/Paxillin LD4 complexVanarctil et al., 2014PDB code: 4R32Crystal structure of CMA/Paxillin LD4 complexLi et al., 2011PDB code: SUMECrystal structure of CAM3/Paxillin LD4 complexLi et al., 2011PDB code: 3UECrystal structure of CAM3/Paxillin LD4 complexLi et al., 2011PDB code: SUMECrystal structure of CAM3/Paxillin LD4 complexLi et al., 2012PDB code: SUMECrystal structure of CAM3/Paxillin LD4 complexLi et al., 2012PDB code: SUMECrystal structure of CAM3/Paxillin LD4 complexLi et al., 2012PDB code: SUMECrystal structure of CAM3/Paxillin LD4 complexSchlenker and Rittinger, 2009PDB code: SUMECrystal structure of CAM3/Paxillin LD4This paperN/ACrystal	Recombinant protein: Paxillin LD4 (aa 261- 282)	This paper	N/A
Recombinant protein: Stanka NPD2+H8-CBS-SAMZeng et al., 2018N/ARecombinant protein: Scribble PD21-4 (az 715-1196)This paperN/APeptide: JP-K GBD / St42D (ALEEDAOILKVIEA/CTSAKT)This paperN/APeptide: JP-K GBD / St42D (ALEEDAOILKVIEA/CTSAKT)This paperN/APeptide: JP-R GBD / St42D (ALEEDAOILKVIEA/CTSAKT)This paperN/APeptide: JP-R GBD / St42D (ALEEDAOILKVIEA/CTSAKT)This paperN/ACitcal Commercial Assays	Recombinant protein: Paxillin LD5 (aa 331- 346)	This paper	N/A
Recombinant protein: Scribble PD21-4 (a 2715-1196)This paperN/APeptide: J-Pix GBD (ALEEDAOILKVIEANCT)This paperN/APeptide: J-Pix GBD (ALEEDAOILKVIEANCT)This paperN/APeptide: J-Pix GBD (ALEEDAOILKVIEANCTSAKT)This paperN/ACritical Commercial AssaysThis paperN/ALipofectamine2000 transfection kitInvitrogenCatt# 11668019ViafectPromegaCatt# 11668019Deposited DataCatt# Ed981Deposited DataThis paperPDB code: 6JMUCrystal structure of GIT/Pa-Pix complexThis paperPDB code: 6JMUCrystal structure of GIT/Pa-Pix complexThis paperPDB code: 6JMUCrystal structure of Pix/Pa/Paxillin LD4 complexHoelleer et al., 2008PDB code: 2JXOCrystal structure of CAM2Paxillin LD4 complexLi et al., 2014PDB code: 8DQGCrystal structure of CAM2Paxillin LD4 complexLi et al., 2012PDB code: 3DUGCrystal structure of CAM2Paxillin LD4 complexLi et al., 2012PDB code: 3DUGCrystal structure of GIT coiled-coilSchlenker and Rittinger, 2009PDB code: 3DUGCrystal structure of GIT coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GIT coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GIT coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GIT coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GIT coiled-coilSchlenker and Rittinger, 2009PD	Recombinant protein: Shank3 NPDZ-HBS-CBS-SAM	Zeng et al., 2018	N/A
Peptide:Pix Bap (ABD (ALEEDAOLLKVIEAYCTSAKT)This paperN/APeptide:Pix Bap (SAD (ALEEDAOLLKVIEAYCTSAKT)This paperN/APeptide:Pertide:N/ACritical Commercial AssaysInvitrogenCat# 1668019UiafectPromegaCat# 1668019Deposited DataCat# 1668019Crystal structure of GIT1/Paxillin complexThis paperPDB code: 6JMTCrystal structure of GIT1/Paxillin complexThis paperPDB code: 6JMTCrystal structure of GIT1/Paxillin LD4 complexThis paperPDB code: 2JAOCrystal structure of GIT1/Paxillin LD4 complexVanarotti et al., 2014PDB code: 4R32Crystal structure of CCM3/Paxillin LD4 complexVanarotti et al., 2013PDB code: 3ROGCrystal structure of ACAP (GAP-ANKBal et al., 2012PDB code: 3ROGCrystal structure of ACAP (GAP-ANKBal et al., 2012PDB code: 3WGACrystal structure of GCM3/Paxillin LD4 complexL et al., 2013PDB code: 3WGACrystal structure of GAP-ANKBal et al., 2012PDB code: 3WGACrystal structure of GAPA-ANKBal et al., 2012PDB code: 2WGACrystal structure of GAPA-ANKBal et al., 2014PDB code: 2WGACrystal structure of GAPA-ANKBal et al., 20	Recombinant protein: Scribble PDZ1-4 (aa 715-1196)	This paper	N/A
Peptide: β-Pix GBD_Y542D (ALEEDAOILKVIEADCTSAKT)This paperN/APeptide: Paxilin-LD4 (ATRELDELMASLSDFKM)This paperN/ACritical Commercial AssaysUnitore Commercial AssaysInvitrogenCat# 11668019VafectPromegaCat# E4981Deposited DataCrystal structure of GIT1/Paxillin complexThis paperPDB code: 6JMTCrystal structure of GIT2/iP-Pix complexThis paperPDB code: 6JMUCrystal structure of GIT2/iP-Pix complexThis paperPDB code: 6JMQCrystal structure of GIT2/iP-Pix complexVanaroti et al., 2014PDB code: 4R32Crystal structure of FAK/Paxillin LD4 complexHoelleer et al., 2013PDB code: 3ROGCrystal structure of CAM3/Paxillin LD4 complexLi et al., 2011PDB code: 3ROGCrystal structure of GIT1 coiled-coilSchlenker and Rittinger, 2009PDB code: 2WGACrystal structure of GIT1 coiled-coilSchlenker and Rittinger, 2009PDB code: 2WGACrystal structure of GIT2 coiled-coilSchlenker and Rittinger, 2009PDB code: 2WGACrystal structure of GIT2 GASThis paperN/AHEK283T cell lineATCCCat# CCL-2Recombinant DNAInis paperN/APlasmid: gGEX-4T-1-GIT2 GASThis paperN/APlasmid: pGEX-4T-1-GIT2 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GiP-K, 494-555This paperN/APlasmid: pET32m3c-GiP-K, 494-556This paperN/APlasmid: pET	Peptide: β-Pix GBD (ALEEDAQILKVIEAYCTSAKT)	This paper	N/A
Peptide:Paxilin-L04 (ATRELDELMASLSDFKM) This paper N/A Critical Commercial Assays Invitrogen Cat# 11668019 Lipofectamine2000 transfection kit Invitrogen Cat# 11668019 Vafect Promega Cat# 1468019 Deposited Data Cat# E4981 Crystal structure of GIT1/Paxillin complex This paper PDB code: 6JMT Crystal structure of GIT2/PAX This paper PDB code: 6JMU Crystal structure of GIT2/PAX This paper PDB code: 6JMU Crystal structure of GIT2/PAX Vanarotti et al., 2014 PDB code: 4R32 Crystal structure of CM3/Paxillin LD4 complex Li et al., 2012 PDB code: 3MQG Crystal structure of GCM3/Paxillin LD4 complex Li et al., 2012 PDB code: 3WGA Crystal structure of GIT1 colled-coil Schlenker and Rittinger, 2009 PDB code: 2WGA Crystal structure of GIT1 colled-coil Schlenker and Rittinger, 2009 PDB code: 2WGA Experimental Models: Cell Lines This paper N/A HEK293T cell line ATCC Cat# CCL-2 Recombinant DNA Pamid: pGEX-4T-1-p-Pix GBD WT/mutants This paper N/	Peptide: β-Pix GBD_Y542D (ALEEDAQILKVIEADCTSAKT)	This paper	N/A
Critical Commercial Assays Invitrogen Cat# 11668019 Lipofectamine2000 transfection kit Invitrogen Cat# E4981 Deposited Data Crystal structure of GIT1/Paxillin complex This paper PDB code: 6JMT Crystal structure of GIT1/Paxillin Lomplex This paper PDB code: 6JMU Crystal structure of GIT1/Paxillin LD4 complex Vanarotii et al., 2008 PDB code: 4832 Crystal structure of FAK/Paxillin LD4 complex Vanarotii et al., 2014 PDB code: 4832 Crystal structure of ACAP1 GAP-ANK Bai et al., 2011 PDB code: 3RQG Crystal structure of GIT1 incled-coil Schlenker and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 colled-coil Schlenker and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 colled-coil Schlenker and Rittinger, 2009 PDB code: 2W6B Experimental Models: Cell Lines HEK293T cell Lines HEK293T cell Lines HEK293T cell line ATCC Cat# CRL-3216 Heka cell line ATCC Cat# CRL-3216 Heka cell line ATCC Cat# CRL-3216 Plasmid: pGEX-4T1-19Pix GBD WT/mutants This paper N/A Plasmid: pGEX-4T1-130T GAS This paper N/A Plasmid: pET32m3c-GPix GAD This paper N/A Plasmid: pET32m3c-Pix GAD <td< td=""><td>Peptide:Paxillin-LD4 (ATRELDELMASLSDFKM)</td><td>This paper</td><td>N/A</td></td<>	Peptide:Paxillin-LD4 (ATRELDELMASLSDFKM)	This paper	N/A
Lipofectamine2000 transfection kit Invitrogen Cat# 11668019 Viafect Promega Cat# E4981 Deposited Data Crystal structure of GIT1/Paxillin complex This paper PDB code: 6JMT Crystal structure of GIT2/β-Pix complex This paper PDB code: 6JMU Crystal structure of GIT2/β-Pix complex Vanarotti et al., 2008 PDB code: 2JX0 Crystal structure of FAK/Paxillin LD4 complex Vanarotti et al., 2014 PDB code: 4R32 Crystal structure of FAK/Paxillin LD4 complex Li et al., 2011 PDB code: 3RQG Crystal structure of CM3/Paxillin LD4 complex Li et al., 2011 PDB code: 3RQG Crystal structure of CM3/Paxillin LD4 complex Li et al., 2011 PDB code: 3RQG Crystal structure of GCM3/Paxillin LD4 complex Li et al., 2012 PDB code: 3UUE Crystal structure of GLIP code: coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 coled-coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 coled-coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 coled-coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Crystal structure of B-Pix coled-coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Crystal structure of B-Pix Coled-coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Crystal structure of B-Pix Coled-coli Schlenkor and Rittinger, 2009 PDB code: 2W6A Experimental Models: Cell Lines HEK293T cell line ATCC Cat# CCL-2 Recombinant DNA Plasmid: pGEX-4T-1-GIT2 GAS WT/mutants This paper N/A Plasmid: pGEX-4T-1-GIT3 GAS This paper N/A Plasmid: pGEX-4T-1-GIT3 GAS This paper N/A Plasmid: pGEX-3T-1-GIT3 GAS This paper N/A Plasmid: pGEX-3G-B-Pix, 549-553 This paper N/A Plasmid: pGEX-3G-B-Pix, 549-543 This paper N/A Plasmid: pGEX-3G-B-Pix, 540-548 This p	Critical Commercial Assays		
ViafectPromegaCat# E4981Deposited DataCrystal structure of GIT1/Paxillin complexThis paperPDB code: 6JMTCrystal structure of GIT2/P-Pix complexThis paperPDB code: 6JMTCrystal structure of GIT2/P-Pix complexZhang et al., 2003PDB code: 4JX0Crystal structure of FAK/Paxillin LD4 complexVanarotti et al., 2014PDB code: 3R92Crystal structure of CAM2Paxillin LD4 complexLi et al., 2011PDB code: 3R92Crystal structure of CAM2Paxillin LD4 complexLi et al., 2012PDB code: 3R92Crystal structure of CAM2Paxillin LD4 complexLi et al., 2012PDB code: 3MUECrystal structure of GAAP1 GAP-ANKBai et al., 2012PDB code: 3W6ACrystal structure of GIT1 colied-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GP-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GHT1-bix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure	Lipofectamine2000 transfection kit	Invitrogen	Cat# 11668019
Deposited Data Crystal structure of GIT1/Paxillin complex This paper PDB code: 6JMT Crystal structure of GIT1/Paxillin LD4 complex This paper PDB code: 2JX0 Crystal structure of Pyk2/Paxillin LD4 complex Vanarotti et al., 2014 PDB code: 4R32 Crystal structure of FAK/Paxillin LD4 complex Hoelerer et al., 2003 PDB code: 3R32 Crystal structure of CM3/Paxillin LD4 complex Li et al., 2011 PDB code: 3JUE Crystal structure of CAMP GAP-ANK Bai et al., 2012 PDB code: 3JUE Crystal structure of GIT1 coiled-coil Schlenker and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 coiled-coil Schlenker and Rittinger, 2009 PDB code: 2W6B Experimental Models: Cell Lines This paper N/A HEK293T cell line ATCC Cat# CCL-2 Recombinant DNA Experimental Models: Call Lines This paper N/A Plasmid: pGEX-4T-1-Ip-Pix GBD WT/mutants This paper N/A Plasmid: pGEX-4T-1-GIT2 GAS WT/mutants This paper N/A Plasmid: pGEX-4T-1-GIT32M3C-GIT1 GAS This paper N/A Plasmid: pET32m3c-GIT1 GAS This paper N/A Plasmid: pET32m3c-G-Pix, 54B-553	Viafect	Promega	Cat# E4981
Crystal structure of GIT I/Paxillin complex This paper PDB code: 6JMT Crystal structure of GIT2/β-Pix complex This paper PDB code: 6JMU Crystal structure of GIT1 FAT Zhang et al., 2008 PDB code: 6JMU Crystal structure of Pk/C/Paxillin LD4 complex Vanarotti et al., 2014 PDB code: 4R32 Crystal structure of CM3/Paxillin LD4 complex Hoellerer et al., 2003 PDB code: 3RQG Crystal structure of ACAP1 GAP-ANK Bai et al., 2012 PDB code: 3JUE Crystal structure of GIT1 coiled-coil Schlenker and Rittinger, 2009 PDB code: 2W6A Crystal structure of GIT1 coiled-coil Schlenker and Rittinger, 2009 PDB code: 2W6B Experimental Models: Cell Lines Experimental Models: Cell Lines Experimental Models: Cell CL-2 Recombinant DNA Eacombinant DNA Encombinant DNA Plasmid: pGEX-4T-1-GIT2 GAS WT/mutants This paper N/A Plasmid: pGEX-4T-1-GIT3 GAS This paper N/A Plasmid: pET32m3c-GIT1 GAS This paper N/A Plasmid: pET32m3c-GPIx G4A This paper N/A Plasmid: pET32m3c-GIT1 GAS This paper N/A Plasmid: pET32m3c-GPIx G4A This paper N/A Plasmid: pET32m3c-GIT1 GAS This paper N/A Plasmid: pET32m3c-GPIx S28-543 This paper <td>Deposited Data</td> <td></td> <td></td>	Deposited Data		
Crystal structure of GIT2/β-Pix complexThis paperPDB code: 6JMUCrystal structure of GIT1 FATZhang et al., 2008PDB code: 2JX0Crystal structure of PKX/Paxillin LD4 complexVariarotti et al., 2014PDB code: 4R32Crystal structure of FAK/Paxillin LD4 complexHoellerer et al., 2003PDB code: 10W6Crystal structure of CCM3/Paxillin LD4 complexLi et al., 2011PDB code: 3RGGCrystal structure of ACAP1 GAP-ANKBai et al., 2012PDB code: 3JUECrystal structure of GIT1 colled-coilSchlenker and Ritinger, 2009PDB code: 2W6ACrystal structure of GIT1 colled-coilSchlenker and Ritinger, 2009PDB code: 2W6BExperimental Models: Cell LinesHEK293T cell LinesHEK293T cell LinesHEK293T cell lineATCCCat# CCL-2Recombinant DNAThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT3 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-GiT4 GASThis paperN/APlasmid: p	Crystal structure of GIT1/Paxillin complex	This paper	PDB code: 6JMT
Crystal structure of GITT FATZhang et al., 2008PDB code: 2JX0Crystal structure of Pyk2/Paxillin LD4 complexVanarotti et al., 2014PDB code: 4R32Crystal structure of FAK/Paxillin LD4 complexHoelleerer et al., 2003PDB code: 10W6Crystal structure of CCM3/Paxillin LD4 complexLi et al., 2011PDB code: 3RQGCrystal structure of ACAP1 GAP-ANKBai et al., 2012PDB code: 3UECrystal structure of GIT1 colled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix colled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix colled-coilSchlenker and Rittinger, 2009PDB code: 2W6AExperimental Models: Cell LinesATCCCat# CRL-3216HEK293T cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-CiT1 FAT-(GS)s-Paxillin LD4This paper <td>Crystal structure of GIT2/β-Pix complex</td> <td>This paper</td> <td>PDB code: 6JMU</td>	Crystal structure of GIT2/β-Pix complex	This paper	PDB code: 6JMU
Crystal structure of Pyk2/Paxillin LD4 complexVanarotti et al., 2014PDB code: 4R32Crystal structure of FAK/Paxillin LD4 complexHoellerer et al., 2003PDB code: 10W6Crystal structure of ACMP1 GAP-ANKBai et al., 2011PDB code: 3R0GCrystal structure of GLT1 coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of J-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of J-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6AExperimental Models: Cell LinesATCCCat# CRL-3216HEK293T cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperPlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shenk3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Schible PDZ1-4This paperN/APlasmid: pET32m3c-Grif1 full lengthThis paperN/APlasmid: pET32m3c-G-Pix full lengthThis paperN/APlasmid: pET32m3c-G-Pix full lengthThis paperN/APlasmid: pET32m3c-Scribble PDZ1-4	Crystal structure of GIT1 FAT	Zhang et al., 2008	PDB code: 2JX0
Crystal structure of FAK/Paxillin LD4 complexHoellerer et al., 2003PDB code: 10W6Crystal structure of CCM3/Paxillin LD4 complexLi et al., 2011PDB code: 3RQGCrystal structure of ACAP1 GAP-ANKBai et al., 2012PDB code: 3JUECrystal structure of GI11 coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of GI11 coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6BExperimental Models: Cell LinesHEX293 cell lineATCCCat# CRL-3216HEK2931 cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix SCBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Schank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-GIT1 FAT-(GS)Paxillin LD4This paperN/APlasmid: pET32m3c-GiT1 FAT-(GS)Paxillin LD4This paperN/APlasmid: pET32m3c-GiT1 FAT-(GS)Paxillin LD4This paperN/APlasmid: pET32m3c-GiT1 FAT-(GS)Paxillin LD4 </td <td>Crystal structure of Pyk2/Paxillin LD4 complex</td> <td>Vanarotti et al., 2014</td> <td>PDB code: 4R32</td>	Crystal structure of Pyk2/Paxillin LD4 complex	Vanarotti et al., 2014	PDB code: 4R32
Crystal structure of CCM3/Paxillin LD4 complexLi et al., 2011PDB code: 3RQGCrystal structure of ACAP1 GAP-ANKBai et al., 2012PDB code: 3JUECrystal structure of GIT1 coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6BExperimental Models: Cell LinesHEK293T cell lineATCCCat# CRL-3216HEK293T cell lineATCCCat# CCL-2Recombinant DNAThis paperN/APlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix 494-555This paperN/APlasmid: pET32m3c-β-Pix 494-543This paperN/APlasmid: pET32m3c-β-Pix 494-544This paperN/APlasmid: pET32m3c-β-Pix 494-544This paperN/APlasmid: pET32m3c-β-Pix 494-544This paperN/APlasmid: pET32m3c-β-Pix 494-544This paperN/APlasmid: pET32m3c-G-Pix 494-544This paperN/APlasmid: pET32m3c-G-IT1 FAT-(GS)-Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)-Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)-Paxillin LD4This paperN/APlasmid: pET32m3c-G-Pix ful lengthThis paperN/APlasmid: pET32m3c-GA-Pix ful lengthThis paperN/APlasmid: pE	Crystal structure of FAK/Paxillin LD4 complex	Hoellerer et al., 2003	PDB code: 10W6
Crystal structure of ACAP1 GAP-ANKBai et al., 2012PDB code: 3JUECrystal structure of GIT1 coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6BExperimental Models: Cell LinesHEK2937 cell lineATCCCat# CRL-3216HeLa cell lineATCCCat# CCL-2Recombinant DNAHamiti pGEX-4T-1-6Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pGEX-4T-1-GIT2 GASThis paperN/APlasmid: pGEX-3T-6-Pix GBDThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-G-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix 494-555This paperN/APlasmid: pET32m3c-β-Pix 494-548This paperN/APlasmid: pET32m3c-β-Pix 494-548This paperN/APlasmid: pET32m3c-β-Pix 494-548This paperN/APlasmid: pET32m3c-β-Pix 494-548This paperN/APlasmid: pET32m3c-Gril FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pi	Crystal structure of CCM3/Paxillin LD4 complex	Li et al., 2011	PDB code: 3RQG
Crystal structure of GIT1 coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6ACrystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6BExperimental Models: Cell LinesHEK293T cell lineATCCCat# CRL-3216HeLa cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-G-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-CiT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-Pix full lengthThis p	Crystal structure of ACAP1 GAP-ANK	Bai et al., 2012	PDB code: 3JUE
Crystal structure of β-Pix coiled-coilSchlenker and Rittinger, 2009PDB code: 2W6BExperimental Models: Cell LinesHEK293T cell lineATCCCat# CRL-3216HeLa cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix, 494-555This paperN/APlasmid: pET32m3c-β-Pix, 494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-G-IT1 FAT-(GS)g-Paxillin LD4This paperN/APlasmid: pET32m3c-G-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paper <t< td=""><td>Crystal structure of GIT1 coiled-coil</td><td>Schlenker and Rittinger, 2009</td><td>PDB code: 2W6A</td></t<>	Crystal structure of GIT1 coiled-coil	Schlenker and Rittinger, 2009	PDB code: 2W6A
Experimental Models: Cell LinesHEK293T cell lineATCCCat# CRL-3216HeLa cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Gribible PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-Pix full lengthThis paperN/A	Crystal structure of β-Pix coiled-coil	Schlenker and Rittinger, 2009	PDB code: 2W6B
HEK293T cell lineATCCCat# CRL-3216HeLa cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix_GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)g-Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Experimental Models: Cell Lines		
HeLa cell lineATCCCat# CCL-2Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_94-555This paperN/APlasmid: pET32m3c-β-Pix_94-548This paperN/APlasmid: pET32m3c-β-Pix_94-548This paperN/APlasmid: pET32m3c-β-Pix_94-548This paperN/APlasmid: pET32m3c-β-Pix_94-548This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix ful lengthThis paper <t< td=""><td>HEK293T cell line</td><td>ATCC</td><td>Cat# CRL-3216</td></t<>	HEK293T cell line	ATCC	Cat# CRL-3216
Recombinant DNAPlasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)s-Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	HeLa cell line	ATCC	Cat# CCL-2
Plasmid: pGEX-4T-1-β-Pix GBD WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Recombinant DNA		
Plasmid: pGEX-4T-1-GIT2 GAS WT/mutantsThis paperN/APlasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-G-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-Paxillin full lengthThis paperN/APlasmid: pET32m3c-Paxillin full lengthThis paperN/A	Plasmid: pGEX-4T-1-8-Pix GBD WT/mutants	This paper	N/A
Plasmid: pGEX-4T-1-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Schank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-Paxillin full lengthThis paperN/APlasmid: pET	Plasmid: pGEX-4T-1-GIT2 GAS WT/mutants	This paper	N/A
Plasmid: pET32m3c-GIT1 GASThis paperN/APlasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Schank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-Paxillin full lengthThis paperN/A	Plasmid: pGEX-4T-1-GIT1 GAS	This paper	N/A
Plasmid: pET32m3c-GIT2 GASThis paperN/APlasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)5-Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Plasmid: pET32m3c-GIT1 GAS	This paper	N/A
Plasmid: pET32m3c-β-Pix GBDThis paperN/APlasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS)5-Paxillin LD4This paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Plasmid: pET32m3c-GIT2 GAS	This paper	N/A
Plasmid: pET32m3c-β-Pix_494-555This paperN/APlasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Plasmid: pET32m3c-β-Pix GBD	This paper	N/A
Plasmid: pET32m3c-β-Pix_528-543This paperN/APlasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Plasmid: pET32m3c-B-Pix 494-555	This paper	N/A
Plasmid: pET32m3c-β-Pix_494-548This paperN/APlasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAMZeng et al., 2018N/APlasmid: pET32m3c-Scribble PDZ1-4This paperN/APlasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4This paperN/APlasmid: pET32m3c-GIT1 full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/APlasmid: pET32m3c-β-Pix full lengthThis paperN/A	Plasmid: pET32m3c-B-Pix 528-543	This paper	N/A
Plasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAM Zeng et al., 2018 N/A Plasmid: pET32m3c-Scribble PDZ1-4 This paper N/A Plasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4 This paper N/A Plasmid: pET32m3c-GIT1 full length This paper N/A Plasmid: pET32m3c-GIT1 full length This paper N/A Plasmid: pET32m3c-GIT1 full length This paper N/A Plasmid: pET32m3c-β-Pix full length This paper N/A Plasmid: pET32m3c-Paxillin full length This paper N/A	Plasmid: pET32m3c-β-Pix 494-548	This paper	N/A
Plasmid: pET32m3c-Scribble PDZ1-4 This paper N/A Plasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4 This paper N/A Plasmid: pET32m3c-GIT1 full length This paper N/A Plasmid: pET32m3c-β-Pix full length This paper N/A Plasmid: pET32m3c-β-Pix full length This paper N/A Plasmid: pET32m3c-β-Pix full length This paper N/A	Plasmid: pET32m3c-Shank3 NPDZ-HBS-CBS-SAM	Zeng et al., 2018	N/A
Plasmid: pET32m3c-GIT1 FAT-(GS) ₅ -Paxillin LD4 This paper N/A Plasmid: pET32m3c-GIT1 full length This paper N/A Plasmid: pET32m3c-β-Pix full length This paper N/A Plasmid: pET32m3c-Paxillin full length This paper N/A	Plasmid: pET32m3c-Scribble PDZ1-4	This paper	N/A
Plasmid: pET32m3c-GIT1 full length This paper N/A Plasmid: pET32m3c-β-Pix full length This paper N/A Plasmid: pET32m3c-Paxillin full length This paper N/A	Plasmid: pET32m3c-GIT1 FAT-(GS)₅-Paxillin LD4	This paper	N/A
Plasmid: pET32m3c-β-Pix full length This paper N/A Plasmid: pET32m3c-Paxillin full length This paper N/A	Plasmid: pET32m3c-GIT1 full length	This paper	N/A
Plasmid: pET32m3c-Paxillin full length This paper N/A	Plasmid: pET32m3c-β-Pix full length	This paper	N/A
	Plasmid: pET32m3c-Paxillin full length	This paper	N/A
Plasmid: pE132m3c-Paxillin LD1 Inis paper N/A	Plasmid: pET32m3c-Paxillin LD1	This paper	N/A

(Continued on next page)

Article

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Plasmid: pET32m3c-Paxillin LD2	This paper	N/A
Plasmid: pET32m3c-Paxillin LD3	This paper	N/A
Plasmid: pET32m3c-Paxillin LD4	This paper	N/A
Plasmid: pET32m3c-Paxillin LD5	This paper	N/A
Plasmid: Flag-GIT2 GAS WT/mutants	This paper	N/A
Plasmid: GIT1-GFP (pEGFP-N1)	This paper	N/A
Plasmid: GIT1_LP-GFP (pEGFP-N1)	This paper	N/A
Plasmid: GIT1_del8-GFP (pEGFP-N1)	This paper	N/A
Plasmid: GFP-GIT1_CTD (aa371-770)	This paper	N/A
Plasmid: RFP-β-Pix	This paper	N/A
Plasmid: RFP-β-Pix_VD	This paper	N/A
Plasmid: GFP-β-Pix (pEGFP-C1)	This paper	N/A
Plasmid: GFP-β-Pix_VD (pEGFP-C1)	This paper	N/A
Plasmid: pCMV-Myc-β-Pix	This paper	N/A
Plasmid: RFP-Paxillin	This paper	N/A
Software and Algorithms		
HKL3000 package	Minor et al., 2006	https://www.hkl-xray.com/hkl-3000
PHASER	McCoy et al., 2007	https://www.phaser.cimr.cam.ac.uk/index. php/Phaser_Crystallographic_Software
PHENIX	Adams et al., 2010	https://www.phenix-online.org/
СООТ	Emsley and Cowtan, 2004	https://www2.mrc-lmb.cam.ac.uk/ personal/pemsley/coot/
PyMOL	Molecular Graphics System, Schrodinger, LLC	https://pymol.org/2/
Origin 7.0	Microcal	https://microcal-origin.software. informer.com/
GraphPad Prism	GraphPad Software Inc	https://www.graphpad.com:443/scientific- software/prism/
ImageJ	NIH	https://imagej.nih.gov/ij/
ASTRA6	Wyatt	https://www.wyatt.com/products/ software/astra.html

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Dr. Mingjie Zhang (mzhang@ust.hk).

Materials Availability

Materials such as plasmids will be available without further restrictions upon request to the Lead Contact (mzhang@ust.hk).

Data and Code Availability

The atomic coordinates of the GIT2/β-Pix and GIT1/Paxillin complexes are deposited to the Protein Data Bank and have been released under the accession codes: 6JMT and 6JMU, respectively. Original imaging data have been deposited to Mendeley data: https://data.mendeley.com/datasets/wztrr8v7ps/2. Other data are available from the corresponding author upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strain

Escherichia coli BL21 (DE3) and (Codon Plus) cells were used in this study for the production of recombinant proteins. Cells were cultured in LB medium supplemented with necessary antibiotics.

Molecular Cell Article

Cell Culture

HeLa and HEK293T cells were both cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Cultured cells were maintained at 37°C with 5% CO₂. Cells were tested negative for mycoplasma contamination by cytoplasmic DAPI staining. The cells were not further authebticated.

METHOD DETAILS

Constructs and peptides

Mouse *GIT1* (GenBank: NM_001004144.1), *GIT2* (GenBank: NM_001077360.1), *Arhgef7* (encoding β-Pix; GenBank: NM_017402.5), and *Pxn* (encoding Paxillin; GenBank: NM_133915.3) genes were amplified from mouse brain cDNA library. Mouse full length *Shank3* gene was kindly provided by Dr. Guoping Feng at Massachusetts Institute of Technology. Human *Scrib* (encoding Scribble; GenBank: NM_015356.4) gene was amplified from human cDNA library. Various fragments of these genes were amplified by standard PCR method and cloned into pGEX 4T-1, pET32M3C (with a N-terminal Trx-His₆ tag), pEGFP-N1, pEGFP-C1, pTRFP, pCDNA3.1-Flag or pCMV-Myc vector. Mutations were created through site-directed mutagenesis method. All constructs were confirmed by DNA sequencing.

The wild-type β -Pix GBD peptide (sequence: ALEEDAQILKVIEAYCTSAKT), β -Pix GBD_Y542D (sequence: ALEEDAQILKVIE ADCTSAKT), and Paxillin LD4 peptide (sequence: ATRELDELMASLSDFKM) were commercially synthesized by ChinaPeptides (Shanghai, China) with purity > 95%.

Protein expression and purification

Recombinant proteins were expressed in *Escherichia coli* BL21 (DE3) or (Codon Plus) cells at 16°C for 18h inducing by the isopropyl- β -D-thiogalactoside (IPTG) at a final concentration of 0.2 mM. The N-terminal Trx-His₆ tagged and GST-tagged proteins were purified by Ni²⁺-NTA agarose affinity chromatography and GSH-Sepharose affinity chromatography, respectively, and followed by a Superdex-200 26/60 size-exclusion chromatography. For β -Pix and Paxillin full length proteins, a step of monoQ column was used to remove nucleic acids contamination or degraded proteins.

Isothermal titration calorimetry (ITC) assay

ITC measurements were carried out on a MicroCal VP-ITC system (Malvern) at 25°C. Various GIT1 (in the cell, \sim 50 µM) and β -Pix (in the syringe, \sim 500 µM) proteins were in the buffer containing 50 mM Tris (pH 8.0), 100 mM NaCl, and 4 mM β -ME. LD motifs of Paxillin (in the syringe, \sim 500 µM) and GIT1 FAT (in the cell, \sim 50 µM) proteins were in the buffer containing 50 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EDTA and 1 mM DTT. In each titration, 10 µL aliquot of protein in the syringe was injected into the cell at a time interval of 120 s make sure that the titration peak returned to the baseline. Titration data were fitted with the one-site binding model using Origin 7.0.

GST-pull down assay

Flag-tagged wild-type and mutants of GIT2 GAS were overexpressed in HEK293T cells. Cells were harvested and lysed by the icecold cell lysis buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 10% glycerol, 2 mM MgCl₂, 1% Triton and protease inhibitor cocktail). After centrifugation at 16,873 g for 10 min at 4°C, the supernatants were incubated with 20 μ l various wild-type or mutants of GST- β -Pix GBD pre-loaded GSH-Sepharose 4B slurry beads. After extensive wash with the cell lysis buffer, the captured proteins were eluted by 20 μ l 2 × SDS-PAGE loading dye and detected by western blot using anti-Flag antibody (Sigma, 1:3000, Cat# F1804).

Fast protein liquid chromatography (FPLC) coupled with static light scattering

The analysis was performed on an Agilent InfinityLab system coupled with a static light scattering detector (miniDawn, Wyatt) and a differential refractive index detector (Optilab, Wyatt). 150 μ L GIT1-CC or β -Pix-CC protein sample at 50 μ M was loaded into a Superose 12 10/300 GL column (GE Healthcare) pre-equilibrated with 50 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EDTA, 1 mM DTT buffer. Data were analyzed using ASTRA 6 software (Wyatt).

Fluorescence polarization assay

Fluorescence polarization assay was carried out on a PerkinElmer LS-55 fluorimeter equipped with an automated polarizer at 25°C. In the assay, the commercially synthesized WT and mutant β -Pix GBD peptides were labeled with fluorescein-5-isothicyanate (FITC) (Invitrgen, Molecular Probe) at their N-termini. The FITC-labeled WT or mutant β -Pix GBD peptide was titrated with WT or mutant GIT2 GAS or GIT1 GAS in the buffer containing 50 mM Tris, pH 8.0, 100 mM NaCl, 1 mM DTT. The K_d value was fitted with classical one-site specific binding model using GraphPad Prism.

Crystallization, Data collection and Structure determination

The GIT2 GAS/ β -Pix GBD complex

For the GIT2 GAS^{S255A/S256A}/ β -Pix GBD complex, GIT2 GAS^{S255A/S256A} was mixed with a commercially synthesized β -Pix GBD peptide in a molar ratio of 1:1.3 (~8 mg/ml) in the buffer of 50 mM Tris, pH 8.0, 100 mM NaCl, 2 mM DTT. The best crystals were obtained by the hanging drop diffusion method at 16°C in the buffer condition containing 0.2 M NaF, 0.1 M Bis-Tris propane/citric acid pH 6.7

Article

and 16% PEG3350. Crystals were soaked in crystallization solution containing 25% glycerol for cryo-protection. The diffraction data were collected at BL19U1 at Shanghai Synchrotron Radiation Facility (SSRF, China). The diffraction data were processed with the HKL3000 package (Minor et al., 2006). The complex structure was solved by the molecular replacement method by PHASER (McCoy et al., 2007) using the structure of GAP-ANK tandem of ACAP1 (PDB code: 3JUE) as the searching model. Further refinement was performed using PHENIX (Adams et al., 2010) and Coot (Emsley and Cowtan, 2004). The final refinement statistics of the complex structures were listed in Table S1.

The GIT1 FAT/Paxillin LD4 complex

To obtain stable GIT1/Paxillin complex, GIT1 FAT (aa 640-770) was fused with a "GSGSGSGSGS" linker and Paxillin LD4 (aa 261-282). The best crystals of the fusion protein (~20 mg/ml) were obtained by the hanging drop diffusion method at 16°C in the buffer containing 0.2 M (NH4)₂SO₄, 30% PEG4000. Before X-ray diffraction experiments, crystals were soaked in crystallization solution containing 25% glycerol for cryo-protection. The diffraction data were collected at BL19U1 at Shanghai Synchrotron Radiation Facility (SSRF, China), and processed with the HKL3000 package. Using the structure of the GIT1 FAT apo form structure (PDB code: 2JX0) as the search model, the initial structural model was solved using the molecular replacement method using the software suits of PHASER. Refinements were carried out using PHENIX. The dataset was twinned with a twin fraction of 0.37 as indicated by phenix.xtriage (Adams et al., 2010). Twin refinement restraints were applied during the refinement. Coot was used for Paxillin peptide modeling and model adjustments. The final refinement statistics of the complex structures were listed in Table S1. All structural diagrams were prepared by PyMOL.

Protein labeling with fluorophore

Purified proteins were exchanged into the NaHCO₃ buffer containing 300 mM NaCl, 100 mM NaHCO₃, pH 8.3, 4 mM β -ME using a HiTrap desalting column and concentrated to 5 mg/ml before reaction. Cy3/Cy5 NHS ester (AAT Bioquest) and Alexa 488 NHS ester (Thermo Fisher) were dissolved in DMSO and incubated with the corresponding protein at room temperate for 1h. The fluorophore was mixed with protein solution in 1:1 molar ratio. The labeling reaction was quenched by the 200 mM Tris, pH 8.2 buffer, and the labeled protein was separated with a HiTrap desalting column into buffer containing 50 mM Tris, pH 8.0, 300 mM NaCl, and 4 mM β -ME. Fluorescence labeling efficiency was measured by Nanodrop 2000 (Thermo Fisher).

In vitro phase transition assay

All purified proteins were exchanged into the buffer containing 50 mM Tris, pH 8.0, 300 mM NaCl, and 4 mM β -ME. After centrifugation at 16,873 g for 10 min at 4°C, samples were placed on ice prior to the phase transition assay.

For sedimentation-based assays, GIT1 protein, GIT1/ β -Pix mixture, or GIT1/ β -Pix/Paxillin mixture each with total volume of 50 μ L was incubated at room temperature for 10 min. Then, the mixture was centrifuged at 16,873 g for 3 min at 22°C. Samples from supernatant fraction and pellet fraction were analyzed by SDS-PAGE with Coomassie blue staining. Each assay was performed three times. The intensity of each band on SDS-PAGE was quantified by ImageJ and data were presented as mean \pm SD

For microscope-based assays, each sample was injected into a home-made chamber as described previously (Zeng et al., 2016) for DIC (Nikon eclipse 80i) or fluorescent imaging (Zeiss LSM 880).

Fluorescence recovery after photo-bleaching assay

FRAP assay was performed on a Zeiss LSM 880 confocal microscope with a 40X oil objective. For *in vitro* FRAP experiments on fluorophore labeled proteins, Cy3 signal was bleached by 561 nm laser beam at room temperature. For FRAP assay on puncta in living cell, HeLa cells were cultured on glass-bottom dishes (MatTek) and transfected with the indicated plasmids. GFP signal was bleached with 488 nm laser beam at 37°C.

For each experiment, the fluorescence intensities of a neighboring droplet with similar size to the bleached one were also recorded for intensity correction. Background was subtracted before data analysis. The ROI intensity at time 0 s (right after the photobleaching) was set as 0% and the pre-bleaching intensity was normalized to 100%.

HeLa cell imaging, focal adhesion localization and cell migration

HeLa cells were cultured on 12-well plates and transfected with the indicated plasmids using Viafect (Promega, Madison, WI). After expression for 24h, cells were fixed with 4% paraformaldehyde (PFA) and immunostained with the indicated antibodies. Images were acquired on Leica SP8 or Zeiss LSM 880 confocal microscope by a 40 × oil lens. Images were processed and analyzed using ImageJ. For focal adhesion localization analysis, three independent experiments were conducted in a blinded fashion. Focal adhesion regions were outlined and selected based on the Paxillin channel. The focal adhesion enrichment ratio was calculated as $[GFP_{FA intensity}]/[GFP_{cvtoplasm intensity}]$ or $[\beta$ -Pix_{FA intensity}/[β -Pix_{cvtoplasm intensity}], respectively.

Cell migration experiment was performed using Transwell membrane filter inserts (8 μ m pore size, Corning costar). 1 × 10⁵ HeLa cells were seeded into the upper chamber and allowed to migrate into the lower chamber for 16-18h at 37°C. Cells in the upper chamber were carefully wiped by cotton buds, cells at the bottom of the membrane were washed once with PBS, and fixed by 100% methanol for 10 min, and then stained with Crystal Violet Staining Solution (Beyotime Biotechnology) for 10 min. The migrated cells were counted under a light microscope from five random fields of each well. All experiments were performed three times.

Molecular Cell Article

Primary hippocampal neuron culture and imaging

Hippocampal neuron cultures were prepared as previously described (Zhu et al., 2017). At DIV14, neurons were transfected with 2 mg indicated plasmids per well (12-well plate) using Lipofectamine 2000 reagent (Invitrogen). Neurons were fixed at DIV18 with 4% paraformaldehyde (PFA) together with 4% sucrose in 1 × PBS buffer and mounted on slides for imaging. Confocal images were obtained using a Leica SP8 confocal microscope with a 40 × oil-immersion lens. Transfected neurons were chosen randomly for quantification from at least three independent batches of cultures. For detailed spine visualization, an additional 4 × zoom factor was applied. Normally, four randomly selected dendrites (~65 μ m in length each) were imaged and analyzed from an individual neuron. Each image was collected as a z series maximum projection with 0.35- μ m depth intervals. Intensity was measured with ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters including the definitions and exact values of n (e.g., number of experiments), distributions and deviations are reported in the Figures and corresponding Figure Legends. For focal adhesion localization and transwell migration assay, the results were expressed as mean \pm SEM; ns, not significant, ****p < 0.0001, ***p < 0.001, **p < 0.01, using one-way ANOVA with Dunnett's multiple comparison test. For synaptic targeting and spine development assay, the results were expressed as mean \pm SEM; ns, not significant, ****p < 0.0001, ***p < 0.001, ***p < 0.01, ***p < 0.001, ****p < 0.0001, ****p < 0

Molecular Cell, Volume 79

Supplemental Information

GIT/PIX Condensates Are Modular and Ideal

for Distinct Compartmentalized Cell Signaling

Jinwei Zhu, Qingqing Zhou, Yitian Xia, Lin Lin, Jianchao Li, Mengjuan Peng, Rongguang Zhang, and Mingjie Zhang

Supplemental Information

Figure S1. Structural analysis of ArfGAP, ANK, and SHD domains of GIT2, Related to Figures 1&2. (A) Ribbon diagram representation of the structure of ArfGAP domain. A zinc ion coordinated by four cystines is shown. The arginine finger, R39, is shown in stick mode. **(B)** Superimposition of the structure of GAP^{GIT2} with that of GAP^{ASAP3} (PDB code: 3LVQ) showing that a conserved arginine of GAP^{GIT2}, R39^{GIT2}, aligns well with the arginine finger of ASAP3, R469^{ASAP3}, which is required for GTP hydrolysis. **(C-D)** Ribbon diagram representations of the structures of ANK **(C)** and SHD **(D)** domains.

Figure. S2 Sequence analysis of GIT and PIX family proteins, Related to Figures 1-3. (A) Structure-based sequence alignment of GIT family proteins. In this alignment, the identical residues are highlighted with red boxes, and the conserved residues are color in red. Residues required for domain-domain coupling in GIT GAS tandem and PIX-GBD binding are indicated by black and blue dots, respectively. (B) Sequence alignment of GBD domains of PIX family proteins. The identical residues are color in red. Residues required for GIT GAS binding are indicated by blue dots. (C-D) Sequence analysis of GIT1 using an online Prion-like Amino Acid Composition prediction tool (PLAAC, http://plaac.wi.mit.edu/) and the Global Plot tool **(C)** (http://globplot.embl.de/) from EXPASY (D), showing that GIT1 does not have prionlike sequence and the predicted disordered sequences are relatively short and discontinuous.

Figure S3. Analysis of phase separated droplets in the cytoplasm formed by various forms of GIT and/or β-Pix, Related to Figures 3&4. (A) Quantification results showing the fraction of puncta positive cells expressing various forms of GIT and/or β -Pix. The data were derived from 3 batches of cultured HeLa cells and shown as means \pm SDs, with the total cell number n > 200 for each condition. Each group was compared to the GIT1 WT using One-way ANOVA with Dunnett's multiple comparison test. ns, not significant; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B-H) Representative images of HeLa cells expressing GFP-tagged GIT (GIT1 WT-GFP, GIT1 LP-GFP) and RFP-tagged PIX (β-PIX, β-PIX VD) plasmids as indicated. Note that neither GIT LP nor PIX VD mutant could form phase separated droplets in living cells. (I) β -Pix alone could not form phase separation at the concentration of 100 μ M. (J) Fluorescence polarization assay showing that the β -Pix-GBD Y542D mutant bound with GIT1 GAS with a K_d of ~76.4 μ M. (K) Representative images showing that coexpression of GIT1-GFP and RFP-β-Pix Y542D in HeLa cells produced multiple spherical puncta. Scale bars in Panels B-H are indicated in each image. Scale bar for Panel K: 5 µm.

Figure S4. GIT1_del8 and WT GIT1 displayed the same phase separation property in vitro and in heterologous cells, Related to Figures 3 and 4. (A) Sequence analysis of GIT1 and GIT2. The sequence identities of the three domains between the two proteins are indicated. An 8-residue insert unique in GIT1 GAS tandem is highlighted in red. (B-C) GIT1_del8 could form phase separated droplets in vitro and in living cells. (D-E) GIT1_del8/ β -PIX form phase separated droplets in vitro and in living cells.

Figure S5. Phase diagram of the GIT1/ β -Pix condensates, Related to Figure 4. (A) The concentration of β -Pix was fixed at 5 μ M and increased amount of GIT1 (from 0 to 40 μ M) was gradually added into β -Pix. When GIT1 and β -Pix were at 1:1 molar ratio, they formed liquid-like droplets. The size of droplets increased when the molar ratio of GIT1/ β -Pix increased. (B) When the concentration of GIT1 was fixed at 5 μ M and gradually increasing the amount of β -Pix (from 0 to 40 μ M), the GIT1/ β -Pix co-condensates appeared at 1:1 molar ratio and more or less saturated when β -Pix was in slight excess. Scale bar: 5 μ m.

Figure S6. Biochemical and structural study of GIT1/Paxillin interaction, Related to Figure 5. (A-E) ITC titration curves showing the bindings of Paxillin LD motifs to GIT1-FAT. ITC-based binding curves of LD1 (A), LD2 (B), LD3 (C), LD4 (D), LD5 (E) to GIT1-FAT. (F) Superimposition of the structures of the GIT1 FAT/Paxillin LD4 complex and apo GIT1 FAT. (G) Detailed interactions between GIT1 FAT and Paxillin LD4. (H) The combined surface and ribbon representations of the GIT1 FAT/Paxillin LD4 interface showing that the binding is mainly mediated by hydrophobic interactions. (I-K) Structures of Pky2 FAT/LD4 (PDB code: 4R32) (I), FAK FAT/LD4 (PDB code: 10W6) (J), CCM3 FAT/LD4 (PDB code: 3RQG) (K). (L) ITC-based assays showing that mutations of selected key residues involved in the GIT1 FAT/Paxillin LD4 interface abolished the complex formation. n.d., not detectable.

Figure S7. Z stack image analysis of GIT1-mediated phase separations in Hela cells, Related to Figures 3&4. (A) When GIT1-GFP was co-expressed with Myc- β -Pix, the GIT1/ β -Pix condensates (white arrow) and FA-located GIT1 (white dashed arrow) were not in the same layer based on the Z stack analysis. (B) Similar findings were observed when GIT1-GFP, Myc- β -Pix and RFP-Paxillin were co-expressed in Hela cells. (C) the GIT1/ β -Pix droplets (white arrow) were not in the same layer where endogenous vinculin resided (white dashed arrow).

Figure S8. Relationship between the GIT1-mediated condensates and the PSD condensate, Related to Figure 6. (A) Fluorescence images showing that mixing GIT1, β-Pix and Shank3 at indicated concentrations resulted in condensed droplets with three proteins simultaneously enriched in the condensed phase. Shank3, GIT1 and β-Pix were labeled with iFluor405, Cy3 and Alexa488, respectively, with each at 1% level. Scale bar: 5 µm. (B) Fluorescence images showing that addition of the LD4 peptide (200 µM) into the mixture of GIT1 and β-Pix (both proteins are in their full-length forms and each at the concentration of 5 µM) did not affect the phase separation of the two proteins. GIT1 and β-Pix were labeled with Cy3 and Alexa488 at 1%, respectively. Scale bar: 5 µm. (C) Fluorescence images showing that mixture of GIT1 and β-Pix^{PBM} led to phase separation at indicated concentrations. GIT1 and β-Pix^{PBM} were labeled with Cy3 and Alexa488 at 1%, respectively. Scale bar: 5 µm. (C) Fluorescence images showing that mixture of GIT1 and β-Pix^{PBM} led to phase separation at indicated concentrations. GIT1 and β-Pix^{PBM} were labeled with Cy3 and Alexa488 at 1%, respectively. Scale bar: 5 µm.

Table S1. Data collection and refinement statistics, Related to Figures 1&2				
Data collection and processing				
Dataset	GIT2/β-Pix	GIT1/paxillin		
Source	SSRF-BL19U1	SSRF-BL19U1		
Wavelength(Å)	0.97775	0.97853		
Space group	P21212	P21		
Unit cell(a,b,c,Å)	169.0, 322.7, 44.5	31.2, 91.0, 52.3		
Unit cell($\alpha,\beta,\gamma,\circ$)	90,90,90	90, 107.4, 90		
Resolution range (Å)	50.00-2.80 (2.85-2.80)	50.00-2.00 (2.03-2.00)		
No. of unique reflections	59001 (2912)	18573 (904)		
Redundancy	8.1 (7.7)	6.8 (6.8)		
I/σ(I)	11.8 (3.0)	16.0 (2.3)		
Completeness (%)	95.8 (97.6)	98.6 (98.8)		
R _{merge} (%) ^a	17.5 (76.0)	11.4 (76.4)		
Structure refinement				
Resolution (Å)	44.05-2.80 (2.84-2.80)	45.48-2.00 (2.10-2.00)		
Rwork ^b /Rfree ^c (%)	19.41 (25.99)/25.36	17.28 (23.42)/20.39		
	(31.43)	(25.82)		
rmsd bonds (Å)/angles (°)	0.009/1.184	0.008/1.063		
Number of reflections				
Working set	55585 (2301)	17567 (2493)		
Test set	2987 (147)	970 (158)		
Number of protein atoms	16305	2290		
Number of solvent atoms	0	212		
Average B factor (Å ²)	45.2	32.9		
Ramachandran plot(%)				
Most favored regions	97.4	97.2		
Additionally allowed	2.6	2.8		
Generously allowed	0	0		

T.L. 61 D Dalat Б. llootic а. c. tistis .] to 1 0-7

Numbers in parentheses represent the value for the highest resolution shell.

^a Rmerge = Σ |Ii - Im|/ Σ Ii, where Ii is the intensity of the measured reflection and Im is the mean intensity of all symmetry related reflections.

^b Rcryst = Σ ||Fobs| - |Fcalc||/ Σ |Fobs|, where Fobs and Fcalc are observed and calculated structure factors.

^c Rfree = $\Sigma T ||Fobs|$ - $|Fcalc||/\Sigma T |Fobs|$, where T is a test data set of about 5% of the total reflections randomly chosen and set aside prior to refinement.